Mathematics: Analysis & Approaches SL & HL

Interactive Formula Sheet – First Examinations 2021 – Updated Version 1.3

Prior Learning SL & HL

Area: Parallelogram

$$A = bh$$
b = base, h = height

Area: Triangle

$$A = \frac{1}{2}bh$$
b = base, h = height

Area: Trapezoid

$$A = \frac{1}{2}(a+b)h$$
a, b = parallel sides, h = height

Area: Circle

$$A = \pi r^2$$
r = radius

Circumference: Circle

$$C = 2\pi r$$
r = radius

Volume: Cuboid

$$V = lwh$$
l = length, w = width, h = height

Volume: Cylinder

$$V = \pi r^2 h$$
r = radius, h = height

Volume: Prism

$$V = Ah$$
A = cross-section area, h = height

Area: Cylinder curve (lateral surface)

$$A = 2\pi rh$$
r = radius, h = height

Distance between two points \((x_1, y_1), (x_2, y_2)\)

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Coordinates of midpoint

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
for endpoints \((x_1, y_1), (x_2, y_2)\)

Topic 1: Number and algebra

SL & HL Content

The \(n^{th}\) term of an arithmetic sequence

$$u_n = u_1 + (n-1)d$$

Sum of \(n\) terms of an arithmetic sequence

$$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$$

The \(n^{th}\) term of a geometric sequence

$$u_n = u_1 r^{n-1}$$

Sum of \(n\) terms of a finite geometric sequence

$$S_n = \frac{u_1(r^n - 1)}{r-1} = \frac{u_1(1 - r^n)}{1-r}, \quad r \neq 1$$

Compound interest

$$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$$
FV: future value, PV: present value, n: number of years, k: compounding periods per year, r%: nominal annual rate of interest

Exponents & logarithms (definition)

$$a^x = b \iff x = \log_a b$$
\(a, b > 0, a \neq 1\)

Exponents & logarithms (properties)

$$\log_a xy = \log_a x + \log_a y$$ $$\log_a \frac{x}{y} = \log_a x - \log_a y$$ $$\log_a x^m = m \log_a x$$ $$\log_a x = \frac{\log_b x}{\log_b a}$$

The sum of an infinite geometric sequence

$$S_\infty = \frac{u_1}{1-r}, \quad |r| < 1$$

Binomial Theorem for \(n \in \mathbb{N}\)

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$
Also: \((a+b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r}b^r\)

Binomial coefficient

$$\binom{n}{r} = {}^nC_r = \frac{n!}{r!(n-r)!}$$

HL Only Content

Combinations; Permutations

$${}^nC_r = \binom{n}{r} = \frac{n!}{r!(n-r)!}; \quad {}^nP_r = \frac{n!}{(n-r)!}$$

Extension of Binomial Theorem, \(n \in \mathbb{Q}\)

$$(a+b)^n = a^n\left(1 + n\left(\frac{b}{a}\right) + \frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^2 + \dots \right)$$
Valid for \( \left|\frac{b}{a}\right| < 1 \)

Complex numbers

$$z = a + bi$$
\(a, b \in \mathbb{R}\), \(i^2 = -1\)

Modulus-argument (polar) & Exponential (Euler) form

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\text{cis}\theta$$
\(r = |z|\), \(\theta = \arg(z)\)

De Moivre's theorem

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos(n\theta) + i\sin(n\theta)) = r^n e^{in\theta} = r^n\text{cis}(n\theta)$$
\(n \in \mathbb{Z}\) (extends to \(n \in \mathbb{Q}\) for roots)

Topic 2: Functions

SL & HL Content

Equations of a straight line

$$y = mx+c$$ $$ax+by+d=0$$ $$y-y_1 = m(x-x_1)$$

Gradient formula

$$m = \frac{y_2-y_1}{x_2-x_1}$$

Axis of symmetry of a quadratic function

$$f(x) = ax^2+bx+c \implies x = -\frac{b}{2a}$$

Solutions of a quadratic equation \(ax^2+bx+c=0\)

$$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}, \quad a \neq 0$$

Discriminant

$$\Delta = b^2-4ac$$

Exponential and logarithmic functions

$$a^x = e^{x\ln a}$$ $$\log_a a^x = x = a^{\log_a x}$$
where \(a, x > 0, a \neq 1\)

HL Only Content

Sum & product of roots of polynomial \( \sum_{r=0}^{n} a_r x^r = 0 \)

For \(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0\):
$$\text{Sum of roots} = -\frac{a_{n-1}}{a_n}$$ $$\text{Product of roots} = (-1)^n \frac{a_0}{a_n}$$

Topic 3: Geometry and trigonometry

SL & HL Content

Distance between 2 points \((x_1,y_1,z_1), (x_2,y_2,z_2)\)

$$d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}$$

Coordinates of midpoint of a line with endpoints \((x_1,y_1,z_1), (x_2,y_2,z_2)\)

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

Volume: Right-pyramid

$$V = \frac{1}{3}Ah$$
A = base area, h = height

Volume: Right cone

$$V = \frac{1}{3}\pi r^2 h$$
r = radius, h = height

Area: Cone curve (lateral surface)

$$A = \pi r l$$
r = radius, l = slant height

Volume: Sphere

$$V = \frac{4}{3}\pi r^3$$
r = radius

Surface area: Sphere

$$A = 4\pi r^2$$
r = radius

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2+b^2 - 2ab\cos C$$ $$\cos C = \frac{a^2+b^2-c^2}{2ab}$$

Area: Triangle

$$A = \frac{1}{2}ab\sin C$$

Length of an arc

$$l = r\theta$$
r = radius, \(\theta\) = angle in radians

Area of a sector

$$A = \frac{1}{2}r^2\theta$$
r = radius, \(\theta\) = angle in radians

Identity for \(\tan\theta\)

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Pythagorean identity

$$\cos^2\theta + \sin^2\theta = 1$$

Double angle identities

$$\sin(2\theta) = 2\sin\theta\cos\theta$$ $$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

HL Only Content

Reciprocal trigonometric identities

$$\sec\theta = \frac{1}{\cos\theta}; \quad \csc\theta = \frac{1}{\sin\theta}; \quad \cot\theta = \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}$$

Pythagorean identities (extended)

$$1 + \tan^2\theta = \sec^2\theta$$ $$1 + \cot^2\theta = \csc^2\theta$$

Compound angle identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double angle identity for \(\tan\)

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Magnitude of a vector \(\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}\) or \( \mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k} \)

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Scalar product (dot product)

$$\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3$$ $$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}||\mathbf{w}|\cos\theta$$
\(\theta\) is the angle between \(\mathbf{v}\) and \(\mathbf{w}\)

Angle between two vectors

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{v_1w_1 + v_2w_2 + v_3w_3}{|\mathbf{v}||\mathbf{w}|}$$

Vector equation of a line

$$\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}$$
\(\mathbf{a}\) is position vector of a point on line, \(\mathbf{b}\) is direction vector

Parametric form of the equation of a line

$$x = x_0 + \lambda l, \quad y = y_0 + \lambda m, \quad z = z_0 + \lambda n$$
\((x_0, y_0, z_0)\) is a point, direction vector \(\mathbf{b} = \begin{pmatrix} l \\ m \\ n \end{pmatrix}\)

Cartesian equations of a line

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

Vector product (cross product)

$$\mathbf{v} \times \mathbf{w} = \begin{pmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \end{pmatrix} = (v_2w_3 - v_3w_2)\mathbf{i} + (v_3w_1 - v_1w_3)\mathbf{j} + (v_1w_2 - v_2w_1)\mathbf{k}$$ $$|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin\theta$$
\(\theta\) is the angle between \(\mathbf{v}\) and \(\mathbf{w}\)

Area of a parallelogram

$$A = |\mathbf{v} \times \mathbf{w}|$$
\(\mathbf{v}\) and \(\mathbf{w}\) form two adjacent sides. Area of triangle is \(\frac{1}{2}|\mathbf{v} \times \mathbf{w}|\).

Vector equation of a plane

$$\mathbf{r} = \mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$
\(\mathbf{a}\) is position vector of a point, \(\mathbf{b}, \mathbf{c}\) are non-parallel direction vectors in the plane

Equation of a plane (scalar product form)

$$(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0 \quad \text{or} \quad \mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n} = d$$
\(\mathbf{n}\) is the normal vector to the plane, \(\mathbf{a}\) is position vector of a point on the plane.

Cartesian equation of a plane

$$ax + by + cz = d$$
where normal vector \(\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}\) and \(d = \mathbf{a} \cdot \mathbf{n}\)

Topic 4: Statistics and probability

SL & HL Content

Interquartile range

$$\text{IQR} = Q_3 - Q_1$$

Mean, \(\bar{x}\), of a set of data

$$\bar{x} = \frac{\sum_{i=1}^k f_i x_i}{n}$$
where \(n = \sum_{i=1}^k f_i\) is the total frequency.

Probability of an event A

$$P(A) = \frac{\text{number of outcomes in A}}{\text{total number of outcomes in sample space}} = \frac{n(A)}{n(U)}$$

Complementary events

$$P(A) + P(A') = 1$$
\(A'\) is the complement of A.

Combined events (Addition Rule)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
Probability of A or B or both.

Mutually exclusive events

$$P(A \cup B) = P(A) + P(B)$$
Events A and B cannot occur simultaneously, so \(P(A \cap B) = 0\).

Conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
Probability of A given that B has occurred. Assumes \(P(B) \neq 0\).

Independent events

$$P(A \cap B) = P(A)P(B)$$
If A and B are independent, then \(P(A|B) = P(A)\) and \(P(B|A) = P(B)\).

Expected value of a discrete random variable X

$$E(X) = \mu = \sum x P(X=x)$$

Binomial distribution \(X \sim B(n,p)\)

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x=0,1,\dots,n$$ $$E(X) = np$$ $$\text{Var}(X) = np(1-p)$$
n trials, probability of success p.

Standardized normal variable (Z-score)

$$Z = \frac{X-\mu}{\sigma}$$
If \(X \sim N(\mu, \sigma^2)\), then \(Z \sim N(0, 1)\) (standard normal distribution).

HL Only Content

Bayes' theorem

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)}$$ $$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_j P(B_j)P(A|B_j)}$$
Using Law of Total Probability for \(P(A)\): \(P(A) = P(A|B)P(B) + P(A|B')P(B')\). For partitions \(B_j\), \(P(A) = \sum_j P(A|B_j)P(B_j)\).

Variance \(\sigma^2\) (of a population for grouped data)

$$\sigma^2 = \frac{\sum_{i=1}^k f_i (x_i - \mu)^2}{N} = \frac{\sum_{i=1}^k f_i x_i^2}{N} - \mu^2$$
\(N = \sum f_i\) is total population size. For sample variance \(s^2\), divisor is often \(n-1\).

Standard Deviation \(\sigma\) (of a population for grouped data)

$$\sigma = \sqrt{\frac{\sum_{i=1}^k f_i (x_i - \mu)^2}{N}}$$

Linear transformation of a single random variable X

$$E(aX+b) = aE(X)+b$$ $$\text{Var}(aX+b) = a^2\text{Var}(X)$$

Expected value of a continuous random variable X

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
where \(f(x)\) is the probability density function (PDF).

Variance (general definition for a random variable X)

$$\text{Var}(X) = E[(X-\mu)^2] = E(X^2) - [E(X)]^2$$
where \(\mu = E(X)\).

Variance of a discrete random variable X

$$\text{Var}(X) = \sum (x-\mu)^2 P(X=x) = \left(\sum x^2 P(X=x)\right) - \mu^2$$

Variance of a continuous random variable X

$$\text{Var}(X) = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx = \left(\int_{-\infty}^{\infty} x^2 f(x) dx\right) - \mu^2$$

Topic 5: Calculus

SL & HL Content

Derivative of \(x^n\)

$$f(x) = x^n \implies f'(x) = nx^{n-1}$$

Integral of \(x^n\)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

Area between curve \(y=f(x)\) & x-axis from \(x=a\) to \(x=b\)

$$A = \int_a^b |f(x)| dx$$
If \(f(x) \ge 0\) on \([a,b]\), then \(A = \int_a^b f(x) dx\). If \(f(x) \le 0\), then \(A = -\int_a^b f(x) dx\). Split integral if \(f(x)\) changes sign.

Derivative of \(\sin x\)

$$f(x) = \sin x \implies f'(x) = \cos x$$

Derivative of \(\cos x\)

$$f(x) = \cos x \implies f'(x) = -\sin x$$

Derivative of \(e^x\)

$$f(x) = e^x \implies f'(x) = e^x$$

Derivative of \(\ln x\)

$$f(x) = \ln x \implies f'(x) = \frac{1}{x}, \quad x > 0$$

Chain rule

$$\text{If } y = g(u) \text{ and } u=f(x), \text{ then } \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
Alternatively, if \(y = (g \circ f)(x) = g(f(x))\), then \(y' = g'(f(x))f'(x)\).

Product rule

$$\text{If } y = uv, \text{ then } \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$
Or \( (uv)' = u'v + uv' \).

Quotient rule

$$\text{If } y = \frac{u}{v}, \text{ then } \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
Or \( \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \). Assumes \(v \neq 0\).

Acceleration

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$
\(s(t)\) is displacement, \(v(t)\) is velocity, \(a(t)\) is acceleration at time \(t\).

Distance & Displacement travelled from \(t_1\) to \(t_2\)

$$\text{Total Distance} = \int_{t_1}^{t_2} |v(t)| dt$$ $$\text{Displacement} = s(t_2) - s(t_1) = \int_{t_1}^{t_2} v(t) dt$$

Standard integrals

$$\int \frac{1}{x} dx = \ln|x| + C$$ $$\int \sin x dx = -\cos x + C$$ $$\int \cos x dx = \sin x + C$$ $$\int e^x dx = e^x + C$$

HL Only Content

Derivative of \(f(x)\) from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$

Standard derivatives (extended)

$$\frac{d}{dx}(\tan x) = \sec^2 x$$ $$\frac{d}{dx}(\sec x) = \sec x \tan x$$ $$\frac{d}{dx}(\csc x) = -\csc x \cot x$$ $$\frac{d}{dx}(\cot x) = -\csc^2 x$$ $$\frac{d}{dx}(a^x) = a^x \ln a$$ $$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$ $$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}, \quad |x|<1$$ $$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}, \quad |x|<1$$ $$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$

Standard integrals (extended)

$$\int a^x dx = \frac{a^x}{\ln a} + C$$ $$\int \frac{1}{a^2+x^2} dx = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$$ $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C, \quad |x| < a$$

Integration by parts

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \quad \text{or} \quad \int u \, dv = uv - \int v \, du$$
Often used for integrals of products, e.g., \(\int x e^x dx\), \(\int \ln x dx\).

Area enclosed by a curve \(x=g(y)\) and y-axis from \(y=c\) to \(y=d\)

$$A = \int_c^d |g(y)| dy$$

Volume of revolution about x-axis or y-axis

$$V_x = \pi \int_a^b y^2 dx \quad (\text{about x-axis})$$ $$V_y = \pi \int_c^d x^2 dy \quad (\text{about y-axis})$$
Solid generated by rotating region bounded by curve, axis, and lines.

Euler's method for approximating \(y(x)\) given \(\frac{dy}{dx} = f(x,y)\)

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$ $$x_{n+1} = x_n + h$$
\(y_0 = y(x_0)\) is initial condition, \(h\) is step length.

Integrating factor for linear first-order ODE: \(y' + P(x)y = Q(x)\)

$$\text{Integrating Factor, } I(x) = e^{\int P(x)dx}$$
Multiply ODE by \(I(x)\) to get \((I(x)y)' = I(x)Q(x)\), then integrate.

Maclaurin series expansion of \(f(x)\)

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$$

Maclaurin series for special functions

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^\infty \frac{x^n}{n!}, \quad \forall x$$ $$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^\infty (-1)^{n-1}\frac{x^n}{n}, \quad -1 < x \le 1$$ $$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad \forall x$$ $$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!}, \quad \forall x$$ $$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}, \quad -1 \le x \le 1$$
Explore Our IB Score Calculator 2025 IB Diploma Exam Schedule IB to GPA Calculator 2025 IB Math AI Formula Booklet 2025 IB Math AA Formula Booklet 2025

Why Another Formula Guide?

Back when I wrestled with IB Math AA HL, I carried a dog-eared booklet splattered with latte stains and panic sweat. Problem was, memorising those neat little boxes of symbols never guaranteed I could use them under a ticking exam clock. After tutoring IB kids for five years—and collecting their "wish-I'd-known" confessions—I built this hybrid page:

  • Official booklet (2025 update) in a single click.
  • Bite-size, story-driven explanations so the algebra sticks.

Five Formulas Students Misuse—and How to Nail Them

Syllabus TopicThe Classic Slip-UpFix in One Sentence
FunctionsMixing domain and range when defining inverseAlways state domain of f = range of f⁻¹—swap them, don't duplicate.
CalculusForgetting + C after integratingThat lone "+ C" has rescued more HL marks than any mnemonic—write it before you simplify.
StatisticsUsing population σ for sample dataIf the question says "sample," divide by n – 1, not n.
VectorsDropping the negative sign in angle formulasDraw the vector tail-to-tail; if the angle exceeds 90°, your cos θ should be negative.
Complex NumbersConverting polar→rectangular with degrees instead of radiansRadians live in math mode; hit the ° key only in geometry questions.

Real-World Mini-Stories (Because Symbols Need Context)

The Drone Delivery Route (Vectors)

Zara's CAS-driven drone must drop parcels across Dubai Marina. By feeding waypoints into the calculator she spotted a 12% path overlap—saved the club's competition run.

Coffee-Shop Forecast (Poisson)

A barista used λ = 18 customers/hr to predict wait times before the morning rush. The calculator showed a 9% chance of zero orders in any three-minute window—just enough for a bathroom break.

These quick wins turn those sterile formula boxes into aha! moments you actually remember at 2 a.m.


Break-the-Template Study Hacks

✂️ Rip It, Colour It, Tape It. Cut the booklet into strands by topic, colour-code them, and tape the week's target sheet onto your laptop lid.
🗣️ Teach to an Empty Chair. After solving an integration by parts, explain it aloud to, well, nobody. Your brain hates holes in its own lecture—instant gap-filler.
🎲 Dice Drill. Roll a pair of dice: first die chooses topic (1 = Algebra ... 6 = Probability), second picks question number in the textbook. Zero decision fatigue.

FAQs (Gut-Level Answers)

Do I need to memorise the booklet? No. Know where a formula lives and when to whip it out—speed matters more than rote recall.
HL only: What new formulas show up in 2025? Look for Maclaurin series tweaks and a fresh Chi-squared contingency layout on page 9.

Final Word from a Former IB Survivor

Your booklet is a parachute, not a cheat sheet. Learn how each equation behaves, practise until your GDC muscle memory sings, and the Paper 3 curve won't scare you. If today's tool shaved even five minutes off tomorrow's study session, I've done my job—drop a comment and tell me which formula still haunts you. I read every note (yes, really).