IB Mathematics AI – Topic 3

Geometry & Trigonometry: Vectors (HL Only)

Overview: Vectors are quantities with both magnitude and direction. They are fundamental for describing motion, forces, and geometric relationships in 2D and 3D space.

Key Applications: Kinematics (displacement, velocity, acceleration), physics (forces), navigation, geometry (lines, planes, angles).

Vector Basics

Notation, Representation & Operations

Vector Notation:

  • Bold lowercase: \(\mathbf{a}\), \(\mathbf{v}\)
  • Arrow notation: \(\vec{a}\), \(\overrightarrow{AB}\)
  • Column vector: \(\begin{pmatrix} x \\ y \end{pmatrix}\) in 2D, \(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\) in 3D

Position Vectors:

Position vector of point A relative to origin O:

\[ \overrightarrow{OA} = \mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]

Displacement Vectors:

Vector from point A to point B:

\[ \overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} \]

Magnitude (Length):

\[ |\mathbf{v}| = \sqrt{x^2 + y^2 + z^2} \]

Unit Vector (Direction):

A vector with magnitude 1 in the direction of \(\mathbf{v}\):

\[ \hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} \]

Vector Operations:

Addition: \(\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}\)

Subtraction: \(\mathbf{a} - \mathbf{b} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix}\)

Scalar multiplication: \(k\mathbf{a} = \begin{pmatrix} ka_1 \\ ka_2 \\ ka_3 \end{pmatrix}\)

⚠️ Common Pitfalls & Tips:

  • Vectors have both magnitude AND direction (not just coordinates)
  • Displacement \(\overrightarrow{AB} = \mathbf{b} - \mathbf{a}\), not \(\mathbf{a} - \mathbf{b}\)
  • Don't confuse position vectors with coordinates
  • Unit vectors always have magnitude 1

Scalar Product (Dot Product)

Definition & Applications

Definition:

The scalar product (dot product) of two vectors produces a scalar (number):

\[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta \]

where θ is the angle between the vectors

Component Form (in 3D):

\[ \mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 \]

Multiply corresponding components and add

Properties:

  • Commutative: \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}\)
  • If \(\mathbf{a} \cdot \mathbf{b} = 0\): Vectors are perpendicular
  • If \(\mathbf{a} \cdot \mathbf{b} > 0\): Angle is acute (< 90°)
  • If \(\mathbf{a} \cdot \mathbf{b} < 0\): Angle is obtuse (> 90°)
  • \(\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2\)

⚠️ Common Pitfalls & Tips:

  • Dot product gives a NUMBER, not a vector
  • Perpendicular vectors have dot product = 0
  • Use component form for calculation, then formula for angle
  • Don't forget to take cos⁻¹ when finding angle

Angle Between Vectors

Finding Angles Using Scalar Product

Formula for Angle Between Two Vectors:

\[ \cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \]

Steps to Find Angle:

  1. Calculate scalar product: \(\mathbf{a} \cdot \mathbf{b}\)
  2. Calculate magnitudes: \(|\mathbf{a}|\) and \(|\mathbf{b}|\)
  3. Substitute into formula: \(\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\)
  4. Find angle: \(\theta = \cos^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)\)

Angle Between Two Lines:

For lines with direction vectors \(\mathbf{d}_1\) and \(\mathbf{d}_2\):

The acute angle between lines is:

\[ \theta = \cos^{-1}\left(\frac{|\mathbf{d}_1 \cdot \mathbf{d}_2|}{|\mathbf{d}_1||\mathbf{d}_2|}\right) \]

Use absolute value to ensure acute angle

⚠️ Common Pitfalls & Tips:

  • Check calculator mode (degrees or radians)
  • For acute angle between lines, use absolute value in formula
  • Angle between vectors is always 0° ≤ θ ≤ 180°
  • Use GDC for calculations to avoid errors

📝 Worked Example 1: Angle Between Vectors

Question: Find the angle between vectors \(\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}\)

Solution:

Step 1: Calculate scalar product

\[ \mathbf{a} \cdot \mathbf{b} = (2)(1) + (3)(-1) + (1)(2) = 2 - 3 + 2 = 1 \]

Step 2: Calculate magnitude of a

\[ |\mathbf{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]

Step 3: Calculate magnitude of b

\[ |\mathbf{b}| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \]

Step 4: Find angle

\[ \cos\theta = \frac{1}{\sqrt{14} \times \sqrt{6}} = \frac{1}{\sqrt{84}} \]

\[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{84}}\right) \approx 83.7° \]

Answer: θ = 83.7° (or 1.46 radians)

Vector Product (Cross Product)

Definition & Geometric Interpretation

Definition:

The vector product (cross product) of two vectors produces a VECTOR perpendicular to both:

\[ \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \]

In IB formula booklet

Magnitude:

\[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \]

Geometric Interpretation:

\(|\mathbf{a} \times \mathbf{b}|\) equals the area of parallelogram formed by \(\mathbf{a}\) and \(\mathbf{b}\)

\[ \text{Area of parallelogram} = |\mathbf{a} \times \mathbf{b}| \]

\[ \text{Area of triangle} = \frac{1}{2}|\mathbf{a} \times \mathbf{b}| \]

Properties:

  • NOT commutative: \(\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})\)
  • If parallel: \(\mathbf{a} \times \mathbf{b} = \mathbf{0}\)
  • Result is perpendicular to both vectors
  • Use right-hand rule for direction

⚠️ Common Pitfalls & Tips:

  • Cross product gives a VECTOR, not a number
  • Order matters: \(\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}\)
  • Parallel vectors have cross product = zero vector
  • Use formula booklet - easy to make sign errors

Vector Equation of a Line

Parametric Form

Vector Equation:

\[ \mathbf{r} = \mathbf{a} + \lambda\mathbf{b} \]

where:

  • \(\mathbf{r}\): Position vector of general point on line
  • \(\mathbf{a}\): Position vector of known point on line
  • \(\mathbf{b}\): Direction vector (parallel to line)
  • \(\lambda\): Parameter (scalar, can be any real number)

Component Form (in 3D):

\[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \]

Cartesian Form:

From vector equation, eliminate λ:

\[ \frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} \]

Finding Line Through Two Points:

Given points A and B:

  1. Choose one point as \(\mathbf{a}\) (usually A)
  2. Direction vector: \(\mathbf{b} = \overrightarrow{AB} = \mathbf{b} - \mathbf{a}\)
  3. Write equation: \(\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})\)

⚠️ Common Pitfalls & Tips:

  • Any scalar multiple of direction vector works (e.g., 2b, -b)
  • Different forms of same line can look different
  • λ can take ANY real value (not just 0 ≤ λ ≤ 1)
  • Check point is actually on line by substituting

📝 Worked Example 2: Vector Equation of Line

Question: Find the vector equation of the line passing through points A(1, 2, 3) and B(4, 0, -1).

Solution:

Step 1: Write position vectors

\[ \mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} \]

Step 2: Find direction vector

\[ \overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 4-1 \\ 0-2 \\ -1-3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]

Step 3: Write vector equation

Using point A and direction vector:

\[ \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]

Alternative form (using point B):

\[ \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} + \mu\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]

Answer: \(\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}\)

Applications to Kinematics

Motion in 2D and 3D

Key Quantities:

1. Position Vector:

\(\mathbf{r}(t)\) - location of object at time t

2. Displacement:

Change in position:

\[ \Delta\mathbf{r} = \mathbf{r}(t_2) - \mathbf{r}(t_1) \]

3. Velocity Vector:

Rate of change of position:

\[ \mathbf{v}(t) = \frac{d\mathbf{r}}{dt} \]

Speed: \(|\mathbf{v}(t)|\) (magnitude of velocity)

4. Acceleration Vector:

Rate of change of velocity:

\[ \mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} \]

Constant Velocity Motion:

\[ \mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v} \]

where \(\mathbf{r}_0\) is initial position, \(\mathbf{v}\) is constant velocity

Distance Travelled:

\[ \text{Distance} = \int_{t_1}^{t_2} |\mathbf{v}(t)| \, dt \]

⚠️ Common Pitfalls & Tips:

  • Displacement is a vector; distance is a scalar
  • Speed = |velocity|, not just velocity
  • Differentiate position to get velocity, then again for acceleration
  • Units: check if time is in seconds, minutes, etc.

📊 Quick Reference Summary

Key Formulas

  • Magnitude: \(|\mathbf{v}| = \sqrt{x^2+y^2+z^2}\)
  • Dot: \(\mathbf{a} \cdot \mathbf{b} = a_1b_1+a_2b_2+a_3b_3\)
  • Angle: \(\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\)

Line Equation

  • \(\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}\)
  • a = point on line
  • b = direction vector

Products

  • Dot product → scalar
  • Cross product → vector
  • Perpendicular: dot = 0

Kinematics

  • \(\mathbf{v} = \frac{d\mathbf{r}}{dt}\)
  • \(\mathbf{a} = \frac{d\mathbf{v}}{dt}\)
  • Speed = \(|\mathbf{v}|\)

✍️ IB Exam Strategy

  1. Write vectors in column form for clarity
  2. Use GDC for calculations: Magnitudes, dot products, angles
  3. Show formula setup before calculating
  4. For angles: Always use cos⁻¹ after finding ratio
  5. Check calculator mode (degrees or radians)
  6. For line equations: Clearly identify point and direction vector
  7. Label vectors clearly: Position, displacement, velocity, etc.
  8. Units matter: Include units in final answer

🚫 Top Mistakes to Avoid

  1. Confusing displacement (b - a) with (a - b)
  2. Thinking dot product gives a vector (it's a scalar!)
  3. Forgetting absolute value in angle formula for lines
  4. Not checking if vectors are perpendicular (dot = 0)
  5. Using wrong formula (dot for cross or vice versa)
  6. Calculator in wrong mode for angles
  7. Forgetting to take square root when finding magnitude
  8. Not simplifying direction vector in line equation
  9. Confusing speed (scalar) with velocity (vector)
  10. Rounding too early - keep full accuracy until final answer