IB Mathematics AI – Topic 3
Geometry & Trigonometry: Vectors (HL Only)
Overview: Vectors are quantities with both magnitude and direction. They are fundamental for describing motion, forces, and geometric relationships in 2D and 3D space.
Key Applications: Kinematics (displacement, velocity, acceleration), physics (forces), navigation, geometry (lines, planes, angles).
Vector Basics
Notation, Representation & Operations
Vector Notation:
- Bold lowercase: \(\mathbf{a}\), \(\mathbf{v}\)
- Arrow notation: \(\vec{a}\), \(\overrightarrow{AB}\)
- Column vector: \(\begin{pmatrix} x \\ y \end{pmatrix}\) in 2D, \(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\) in 3D
Position Vectors:
Position vector of point A relative to origin O:
\[ \overrightarrow{OA} = \mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
Displacement Vectors:
Vector from point A to point B:
\[ \overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} \]
Magnitude (Length):
\[ |\mathbf{v}| = \sqrt{x^2 + y^2 + z^2} \]
Unit Vector (Direction):
A vector with magnitude 1 in the direction of \(\mathbf{v}\):
\[ \hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} \]
Vector Operations:
Addition: \(\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}\)
Subtraction: \(\mathbf{a} - \mathbf{b} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix}\)
Scalar multiplication: \(k\mathbf{a} = \begin{pmatrix} ka_1 \\ ka_2 \\ ka_3 \end{pmatrix}\)
⚠️ Common Pitfalls & Tips:
- Vectors have both magnitude AND direction (not just coordinates)
- Displacement \(\overrightarrow{AB} = \mathbf{b} - \mathbf{a}\), not \(\mathbf{a} - \mathbf{b}\)
- Don't confuse position vectors with coordinates
- Unit vectors always have magnitude 1
Scalar Product (Dot Product)
Definition & Applications
Definition:
The scalar product (dot product) of two vectors produces a scalar (number):
\[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta \]
where θ is the angle between the vectors
Component Form (in 3D):
\[ \mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 \]
Multiply corresponding components and add
Properties:
- Commutative: \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}\)
- If \(\mathbf{a} \cdot \mathbf{b} = 0\): Vectors are perpendicular
- If \(\mathbf{a} \cdot \mathbf{b} > 0\): Angle is acute (< 90°)
- If \(\mathbf{a} \cdot \mathbf{b} < 0\): Angle is obtuse (> 90°)
- \(\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2\)
⚠️ Common Pitfalls & Tips:
- Dot product gives a NUMBER, not a vector
- Perpendicular vectors have dot product = 0
- Use component form for calculation, then formula for angle
- Don't forget to take cos⁻¹ when finding angle
Angle Between Vectors
Finding Angles Using Scalar Product
Formula for Angle Between Two Vectors:
\[ \cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \]
Steps to Find Angle:
- Calculate scalar product: \(\mathbf{a} \cdot \mathbf{b}\)
- Calculate magnitudes: \(|\mathbf{a}|\) and \(|\mathbf{b}|\)
- Substitute into formula: \(\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\)
- Find angle: \(\theta = \cos^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)\)
Angle Between Two Lines:
For lines with direction vectors \(\mathbf{d}_1\) and \(\mathbf{d}_2\):
The acute angle between lines is:
\[ \theta = \cos^{-1}\left(\frac{|\mathbf{d}_1 \cdot \mathbf{d}_2|}{|\mathbf{d}_1||\mathbf{d}_2|}\right) \]
Use absolute value to ensure acute angle
⚠️ Common Pitfalls & Tips:
- Check calculator mode (degrees or radians)
- For acute angle between lines, use absolute value in formula
- Angle between vectors is always 0° ≤ θ ≤ 180°
- Use GDC for calculations to avoid errors
📝 Worked Example 1: Angle Between Vectors
Question: Find the angle between vectors \(\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}\)
Solution:
Step 1: Calculate scalar product
\[ \mathbf{a} \cdot \mathbf{b} = (2)(1) + (3)(-1) + (1)(2) = 2 - 3 + 2 = 1 \]
Step 2: Calculate magnitude of a
\[ |\mathbf{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]
Step 3: Calculate magnitude of b
\[ |\mathbf{b}| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \]
Step 4: Find angle
\[ \cos\theta = \frac{1}{\sqrt{14} \times \sqrt{6}} = \frac{1}{\sqrt{84}} \]
\[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{84}}\right) \approx 83.7° \]
Answer: θ = 83.7° (or 1.46 radians)
Vector Product (Cross Product)
Definition & Geometric Interpretation
Definition:
The vector product (cross product) of two vectors produces a VECTOR perpendicular to both:
\[ \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \]
In IB formula booklet
Magnitude:
\[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \]
Geometric Interpretation:
\(|\mathbf{a} \times \mathbf{b}|\) equals the area of parallelogram formed by \(\mathbf{a}\) and \(\mathbf{b}\)
\[ \text{Area of parallelogram} = |\mathbf{a} \times \mathbf{b}| \]
\[ \text{Area of triangle} = \frac{1}{2}|\mathbf{a} \times \mathbf{b}| \]
Properties:
- NOT commutative: \(\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})\)
- If parallel: \(\mathbf{a} \times \mathbf{b} = \mathbf{0}\)
- Result is perpendicular to both vectors
- Use right-hand rule for direction
⚠️ Common Pitfalls & Tips:
- Cross product gives a VECTOR, not a number
- Order matters: \(\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}\)
- Parallel vectors have cross product = zero vector
- Use formula booklet - easy to make sign errors
Vector Equation of a Line
Parametric Form
Vector Equation:
\[ \mathbf{r} = \mathbf{a} + \lambda\mathbf{b} \]
where:
- \(\mathbf{r}\): Position vector of general point on line
- \(\mathbf{a}\): Position vector of known point on line
- \(\mathbf{b}\): Direction vector (parallel to line)
- \(\lambda\): Parameter (scalar, can be any real number)
Component Form (in 3D):
\[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \]
Cartesian Form:
From vector equation, eliminate λ:
\[ \frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} \]
Finding Line Through Two Points:
Given points A and B:
- Choose one point as \(\mathbf{a}\) (usually A)
- Direction vector: \(\mathbf{b} = \overrightarrow{AB} = \mathbf{b} - \mathbf{a}\)
- Write equation: \(\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})\)
⚠️ Common Pitfalls & Tips:
- Any scalar multiple of direction vector works (e.g., 2b, -b)
- Different forms of same line can look different
- λ can take ANY real value (not just 0 ≤ λ ≤ 1)
- Check point is actually on line by substituting
📝 Worked Example 2: Vector Equation of Line
Question: Find the vector equation of the line passing through points A(1, 2, 3) and B(4, 0, -1).
Solution:
Step 1: Write position vectors
\[ \mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} \]
Step 2: Find direction vector
\[ \overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 4-1 \\ 0-2 \\ -1-3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]
Step 3: Write vector equation
Using point A and direction vector:
\[ \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]
Alternative form (using point B):
\[ \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} + \mu\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} \]
Answer: \(\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}\)
Applications to Kinematics
Motion in 2D and 3D
Key Quantities:
1. Position Vector:
\(\mathbf{r}(t)\) - location of object at time t
2. Displacement:
Change in position:
\[ \Delta\mathbf{r} = \mathbf{r}(t_2) - \mathbf{r}(t_1) \]
3. Velocity Vector:
Rate of change of position:
\[ \mathbf{v}(t) = \frac{d\mathbf{r}}{dt} \]
Speed: \(|\mathbf{v}(t)|\) (magnitude of velocity)
4. Acceleration Vector:
Rate of change of velocity:
\[ \mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} \]
Constant Velocity Motion:
\[ \mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v} \]
where \(\mathbf{r}_0\) is initial position, \(\mathbf{v}\) is constant velocity
Distance Travelled:
\[ \text{Distance} = \int_{t_1}^{t_2} |\mathbf{v}(t)| \, dt \]
⚠️ Common Pitfalls & Tips:
- Displacement is a vector; distance is a scalar
- Speed = |velocity|, not just velocity
- Differentiate position to get velocity, then again for acceleration
- Units: check if time is in seconds, minutes, etc.
📊 Quick Reference Summary
Key Formulas
- Magnitude: \(|\mathbf{v}| = \sqrt{x^2+y^2+z^2}\)
- Dot: \(\mathbf{a} \cdot \mathbf{b} = a_1b_1+a_2b_2+a_3b_3\)
- Angle: \(\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\)
Line Equation
- \(\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}\)
- a = point on line
- b = direction vector
Products
- Dot product → scalar
- Cross product → vector
- Perpendicular: dot = 0
Kinematics
- \(\mathbf{v} = \frac{d\mathbf{r}}{dt}\)
- \(\mathbf{a} = \frac{d\mathbf{v}}{dt}\)
- Speed = \(|\mathbf{v}|\)
✍️ IB Exam Strategy
- Write vectors in column form for clarity
- Use GDC for calculations: Magnitudes, dot products, angles
- Show formula setup before calculating
- For angles: Always use cos⁻¹ after finding ratio
- Check calculator mode (degrees or radians)
- For line equations: Clearly identify point and direction vector
- Label vectors clearly: Position, displacement, velocity, etc.
- Units matter: Include units in final answer
🚫 Top Mistakes to Avoid
- Confusing displacement (b - a) with (a - b)
- Thinking dot product gives a vector (it's a scalar!)
- Forgetting absolute value in angle formula for lines
- Not checking if vectors are perpendicular (dot = 0)
- Using wrong formula (dot for cross or vice versa)
- Calculator in wrong mode for angles
- Forgetting to take square root when finding magnitude
- Not simplifying direction vector in line equation
- Confusing speed (scalar) with velocity (vector)
- Rounding too early - keep full accuracy until final answer