AP Precalculus: Sine & Cosine Function Formulas & Graphing

1. General Form (Sine/Cosine)

  • \( y = a\sin(bx+c)+d \)
  • \( y = a\cos(bx+c)+d \)
  • Where:
    • Amplitude: \( |a| \)
    • Period: \( \frac{2\pi}{|b|} \)
    • Phase shift: \( -\frac{c}{b} \)
    • Vertical shift: \( d \)

2. Properties

  • Amplitude: \( |a| \)
  • Period: \( \frac{2\pi}{|b|} \)
  • Phase shift: \( -\frac{c}{b} \)
  • Vertical shift (Midline): \( d \)
  • Frequency: \( \frac{|b|}{2\pi} \)
  • Max value: \( d+|a| \)
    Min value: \( d-|a| \)

3. Write Equations from Graph/Properties

  • Amplitude = \( \frac{\text{max}-\text{min}}{2} \)
  • Midline = \( \frac{\text{max}+\text{min}}{2} \)
  • Period = distance for one cycle (peak-to-peak or trough-to-trough): \( \frac{2\pi}{|b|} \)
  • Phase shift = where graph starts relative to standard, \( -\frac{c}{b} \)
  • Example: Amplitude 2, period \( \pi \), phase shift \( \frac{\pi}{3} \), up 1:
    \( y = 2\sin(2(x-\frac{\pi}{3}))+1 \)

4. Graphs and Translations

  • One cycle for \( y = \sin x \): starts at 0, up to 1, down to 0, to -1, up to 0 (for \( 0 \le x \le 2\pi \))
  • For \( y = a\sin(bx + c) + d \): stretch/compress, shift horizontally/vertically as above
  • Sine: starts at midline, cosine: starts at max/min
  • Shift right: \( -c > 0 \); left: \( -c < 0 \); up: \( d > 0 \); down: \( d < 0 \)

5. Sine/Cosine Comparison

  • \( \sin(x) = \cos(x-\frac{\pi}{2}) \)
  • \( \cos(x) = \sin(x+\frac{\pi}{2}) \)
  • Both have amplitude \( |a| \), period \( 2\pi/|b| \)
  • Graphs are horizontally shifted by \( \frac{\pi}{2} \)