AP Precalculus: Three-Dimensional Vectors Formulas & Properties

1. Magnitude of a 3D Vector

  • For \( \vec{v} = \langle a, b, c \rangle \):
  • \( |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \)

2. Component Form from Points

  • Given points \( P(x_1, y_1, z_1) \), \( Q(x_2, y_2, z_2) \):
  • \( \vec{PQ} = \langle x_2-x_1,\, y_2-y_1,\, z_2-z_1 \rangle \)

3. Vector Addition & Subtraction

  • \( \langle a, b, c \rangle + \langle d, e, f \rangle = \langle a+d,\, b+e,\, c+f \rangle \)
  • \( \langle a, b, c \rangle - \langle d, e, f \rangle = \langle a-d,\, b-e,\, c-f \rangle \)

4. Scalar Multiplication

  • \( k \langle a, b, c \rangle = \langle ka,\, kb,\, kc \rangle \)
  • \( |k \vec{v}| = |k| |\vec{v}| \)

5. Unit Vector in Same Direction

  • For \( \vec{v} \neq 0 \):
    \( \mathbf{u} = \frac{\vec{v}}{|\vec{v}|} \)
  • \( \mathbf{u} \) has magnitude 1 and same direction as \( \vec{v} \)

6. Linear Combinations

  • \( a \vec{u} + b \vec{w} = a\langle u_1, u_2, u_3 \rangle + b\langle w_1, w_2, w_3 \rangle = \langle a u_1 + b w_1,\, a u_2 + b w_2,\, a u_3 + b w_3 \rangle \)