AP Precalculus: Single-Variable Statistics Formulas & Principles

1. Variance & Standard Deviation

  • Population variance: \( \sigma^2 = \frac{1}{N} \sum_{i=1}^{N}(x_i - \mu)^2 \)
  • Sample variance: \( s^2 = \frac{1}{n-1} \sum_{i=1}^{n}(x_i - \bar{x})^2 \)
  • Standard deviation: \( \sigma = \sqrt{\sigma^2} \), \( s = \sqrt{s^2} \)

2. Outlier Detection & Effects

  • An outlier: \( x \) is an outlier if \( x < Q_1 - 1.5 \times IQR \) or \( x > Q_3 + 1.5 \times IQR \)
  • \( IQR = Q_3 - Q_1 \)
  • Removing outlier typically decreases standard deviation and changes mean

3. Sampling Bias & Experiment Design

  • Biased sample: Not representative of the population (selection, measurement, response bias, etc.)
  • Avoid bias: Use random sampling, proper experiment design (control, randomize, replicate, block)

4. Confidence Intervals

  • Mean, known \( \sigma \): \( \bar{x} \pm z^* \frac{\sigma}{\sqrt{n}} \)
  • Mean, unknown \( \sigma \): \( \bar{x} \pm t^* \frac{s}{\sqrt{n}} \)
  • Proportion: \( \hat{p} \pm z^* \sqrt{ \frac{ \hat{p}(1-\hat{p}) }{n} } \)
  • Where \( z^* \) or \( t^* \): z-score (normal) or t-score (small samples)

5. Interpreting Confidence Intervals

  • "We are ___% confident the true parameter lies within the interval."
  • Increasing confidence increases width; increasing \( n \) decreases width

6. Experiment Design & Simulations

  • Well-designed experiments have control, randomization, replication
  • Use simulations to analyze variability/replication in practical situations