AP Precalculus: Logarithms Formulas & Properties
1. Convert Between Exponential and Logarithmic Form
- Exponential: \( a^x = b \)
- Logarithmic: \( \log_a b = x \)
- Equivalence: \( a^x = b \iff \log_a b = x \)
2. Evaluating Logarithms
- \( \log_a a = 1 \)
- \( \log_a 1 = 0 \)
- \( \log_a a^x = x \)
- \( a^{\log_a x} = x \)
3. Change of Base Formula
\( \log_a b = \frac{\log_c b}{\log_c a} \)
Most common: \( \log_a b = \frac{\ln b}{\ln a} = \frac{\log_{10} b}{\log_{10} a} \)
4. Properties of Logarithms
- Product: \( \log_a (xy) = \log_a x + \log_a y \)
- Quotient: \( \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \)
- Power: \( \log_a (x^k) = k \log_a x \)
- Reverse: \( a^{x+y} = a^x\cdot a^y \), \( a^{x-y} = \frac{a^x}{a^y} \), \( (a^x)^k = a^{kx} \) to help remember properties
5. Logarithm Properties: Mixed and Evaluation
- Combine: \( \log_a x^2y = 2\log_a x + \log_a y \)
- Expand or condense using product, quotient, power laws as needed
- Use base change and properties to compute any log (e.g., \( \log_2 8 = 3 \) because \( 2^3=8 \))