AP Precalculus: Function Transformations Formulas
General Transformation Formula
\( g(x) = a\cdot f(b(x - h)) + k \)
- \(h\): horizontal translation (right if \(h>0\), left if \(h<0\))
- \(k\): vertical translation (up if \(k>0\), down if \(k<0\))
- \(a\): vertical stretch/compression (\(|a|>1\) stretches, \(0<|a|<1\) compresses); \(a<0\) also reflects over x-axis
- \(b\): horizontal stretch/compression (\(|b|>1\) compresses, \(0<|b|<1\) stretches); \(b<0\) also reflects over y-axis
1. Translations (Shifts)
- Horizontal Shift: \( f(x-h) \): right by \(h\) units; \( f(x+h) \): left by \(h\) units
- Vertical Shift: \( f(x) + k \): up by \(k\) units;
\( f(x) - k \): down by \(k\) units
2. Reflections
- Over x-axis: \( -f(x) \) (flips output up/down)
- Over y-axis: \( f(-x) \) (flips input left/right)
3. Dilations (Stretches/Compressions)
- Vertical Dilation: \( a \cdot f(x) \)
\(|a|>1\): vertical stretch (taller)
\(0<|a|<1\): vertical compression (shorter)
\(a<0\): includes reflection over x-axis - Horizontal Dilation: \( f(bx) \)
\(|b|>1\): horizontal compression (narrower)
\(0<|b|<1\): horizontal stretch (wider)
\(b<0\): includes reflection over y-axis
4. Describe/Combine Transformations
To break down \( g(x) = -3f(2(x+4)) - 5 \):
- Start with parent function \(f(x)\)
- Shift left by 4 (replace x with x+4)
- Compress horizontally by factor 1/2 (\(f(2x)\))
- Stretch vertically by 3, reflect over x-axis (\(-3f(...)\))
- Shift down by 5
Mapping Points Rule
If point \((x_0, y_0)\) is on \( f(x) \), then on \( g(x) = a f(b(x-h)) + k \), its image is:
\[
\left( x = \frac{x_0}{b} + h,\quad y = a y_0 + k \right)
\]
Use this to quickly find and predict new key points!