IB Mathematics AI – Topic 3

Geometry & Trigonometry: Geometric Transformations (HL Only)

Overview: Geometric transformations use matrices to map points and shapes to their images. This powerful tool allows us to represent reflections, rotations, stretches, and translations algebraically.

Key Concept: A 2×2 matrix handles reflections, rotations, and stretches. A translation vector handles shifts. Combined, they can represent any transformation.

General Matrix Transformation Form

The Transformation Equation

General Form:

\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \]

Components:

  • \(\begin{pmatrix} x \\ y \end{pmatrix}\): Original point coordinates
  • \(\begin{pmatrix} x' \\ y' \end{pmatrix}\): Image point coordinates (after transformation)
  • \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\): Transformation matrix (handles rotations, reflections, stretches)
  • \(\begin{pmatrix} e \\ f \end{pmatrix}\): Translation vector (handles shifts)

Process for Multiple Points:

  1. Write coordinates as column vectors
  2. Multiply by transformation matrix
  3. Add translation vector
  4. Result gives image coordinates

Notation:

Often written as: \(\mathbf{x'} = A\mathbf{x} + \mathbf{b}\)

Where A is the transformation matrix and b is translation vector

⚠️ Common Pitfalls & Tips:

  • Order matters: matrix multiplication is NOT commutative
  • Always apply matrix transformation BEFORE translation
  • Use GDC for calculations - faster and more accurate
  • Can transform multiple points at once using matrix with multiple columns

Reflections

Mirror Transformations

Common Reflection Matrices:

1. Reflection in x-axis:

\[ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Effect: (x, y) → (x, -y)

2. Reflection in y-axis:

\[ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]

Effect: (x, y) → (-x, y)

3. Reflection in line y = x:

\[ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

Effect: (x, y) → (y, x) - swaps coordinates

4. Reflection in line y = -x:

\[ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \]

5. Reflection in line y = x tan θ:

\[ \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \]

Formula in IB formula booklet

⚠️ Common Pitfalls & Tips:

  • Reflection matrices have determinant ±1
  • Reflecting twice returns to original position
  • For diagonal reflections, use formula booklet
  • Check which axis/line is the mirror

Rotations

Rotation About Origin

Rotation Matrix (Anticlockwise about origin by angle θ):

\[ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \]

In IB formula booklet

Common Rotation Angles:

90° anticlockwise:

\[ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]

180°:

\[ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \]

270° anticlockwise (or 90° clockwise):

\[ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

Clockwise Rotation:

For clockwise rotation by angle θ, use -θ in the formula:

\[ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \]

⚠️ Common Pitfalls & Tips:

  • Default rotation is anticlockwise from positive x-axis
  • For clockwise, use negative angle
  • Rotation is always about the origin unless stated otherwise
  • Check calculator mode (degrees or radians)

Stretches and Enlargements

Scaling Transformations

1. Stretch parallel to x-axis (scale factor k):

\[ \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \]

Effect: (x, y) → (kx, y)

2. Stretch parallel to y-axis (scale factor k):

\[ \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \]

Effect: (x, y) → (x, ky)

3. Enlargement (scale factor k from origin):

\[ \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \]

Effect: (x, y) → (kx, ky)

This scales uniformly in all directions

Properties:

  • If k > 1: enlargement (stretches away from axis/origin)
  • If 0 < k < 1: reduction (shrinks toward axis/origin)
  • If k < 0: stretch/enlargement with reflection

⚠️ Common Pitfalls & Tips:

  • Diagonal matrices represent stretches/enlargements
  • Determinant = product of diagonal elements = k₁ × k₂
  • Area scale factor = |determinant|
  • Negative scale factor includes reflection

Translations

Shift Transformations

Translation Vector:

\[ \begin{pmatrix} e \\ f \end{pmatrix} \]

Added to the result of matrix transformation

Effect:

Shifts point by e units horizontally and f units vertically

\[ (x, y) \to (x + e, y + f) \]

Combined with Matrix Transformation:

\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \]

The translation is applied AFTER the matrix transformation

⚠️ Common Pitfalls & Tips:

  • Translation is represented by a vector, not a 2×2 matrix
  • Always add translation AFTER matrix multiplication
  • Translation does not change shape or size
  • Cannot be represented by 2×2 matrix alone

Combined Transformations & Area

Multiple Transformations and Area Effects

Combining Transformations:

To apply transformation B followed by transformation A:

\[ \text{Combined matrix} = AB \]

Important: Apply from right to left (B first, then A)

Area Scale Factor:

When a shape is transformed by matrix A, the area is scaled by:

\[ \text{Area of image} = |\det(A)| \times \text{Area of original} \]

Key Facts About Determinants:

  • |det(A)| = 1: Area preserved (reflections, rotations)
  • |det(A)| > 1: Area increases (enlargements)
  • |det(A)| < 1: Area decreases (reductions)
  • det(A) = 0: Shape collapses to line or point

Finding Original Point:

If you know the image and transformation, find original using:

\[ \mathbf{x} = A^{-1}(\mathbf{x'} - \mathbf{b}) \]

⚠️ Common Pitfalls & Tips:

  • Order matters: AB ≠ BA in general
  • Use absolute value of determinant for area
  • Translations don't affect area (not in the matrix)
  • Use GDC to find determinants and inverses

📝 Worked Example 1: Applying Transformation

Question: A point P(3, 2) undergoes the transformation \(\mathbf{x'} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}\mathbf{x} + \begin{pmatrix} 4 \\ -1 \end{pmatrix}\). Find the coordinates of the image P'.

Solution:

Step 1: Write point as column vector

\[ \mathbf{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \]

Step 2: Apply matrix transformation

\[ A\mathbf{x} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}\begin{pmatrix} 3 \\ 2 \end{pmatrix} \]

\[ = \begin{pmatrix} 2(3) + (-1)(2) \\ 1(3) + 3(2) \end{pmatrix} = \begin{pmatrix} 6 - 2 \\ 3 + 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} \]

Step 3: Add translation vector

\[ \mathbf{x'} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} + \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \]

Answer: P'(8, 8)

📝 Worked Example 2: Area After Transformation

Question: A triangle has area 12 cm². It is transformed by matrix \(A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}\). Find the area of the image triangle.

Solution:

Step 1: Calculate determinant of transformation matrix

\[ \det(A) = (3)(4) - (1)(2) = 12 - 2 = 10 \]

Step 2: Apply area formula

Area scale factor = |det(A)| = |10| = 10

\[ \text{Area of image} = |\det(A)| \times \text{Original area} \]

\[ = 10 \times 12 = 120 \text{ cm}^2 \]

Answer: 120 cm²

Transformation Matrix Summary

TransformationMatrixDet
Reflection in x-axis\(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\)-1
Reflection in y-axis\(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\)-1
Reflection in y = x\(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)-1
Rotation θ anticlockwise\(\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\)1
Enlargement scale k\(\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}\)

📊 Quick Reference

General Form

  • \(\mathbf{x'} = A\mathbf{x} + \mathbf{b}\)
  • Matrix first, then translate
  • Use GDC for calculations

Area Scale Factor

  • Factor = |det(A)|
  • Reflections/Rotations: |det| = 1
  • New area = factor × old area

Key Matrices

  • All in formula booklet
  • Check angles (deg/rad)
  • Order matters for combinations

Finding Original

  • \(\mathbf{x} = A^{-1}(\mathbf{x'} - \mathbf{b})\)
  • Subtract translation first
  • Then multiply by inverse

✍️ IB Exam Strategy

  1. Use GDC extensively - enter matrices and let calculator do multiplication
  2. Show setup: Write the matrix equation before calculating
  3. For area: Calculate determinant using GDC, take absolute value
  4. Multiple transformations: Multiply matrices right to left
  5. Check formula booklet for transformation matrices
  6. Verify calculator mode (degrees/radians) for rotations
  7. Label clearly: Original point, transformation, image
  8. For inverse problems: Rearrange equation first, then solve

🚫 Top Mistakes to Avoid

  1. Applying translation before matrix transformation (wrong order!)
  2. Forgetting absolute value when calculating area scale factor
  3. Multiplying combined transformations in wrong order (AB ≠ BA)
  4. Using wrong formula from booklet (check carefully)
  5. Calculator in wrong mode for rotations
  6. Not writing coordinates as column vectors
  7. Forgetting to add translation vector at the end
  8. Confusing transformation matrix with translation vector
  9. Not showing matrix equation setup (lose method marks)
  10. Rounding too early - keep full accuracy until final answer