IB Mathematics AI – Topic 3
Geometry & Trigonometry: Geometric Transformations (HL Only)
Overview: Geometric transformations use matrices to map points and shapes to their images. This powerful tool allows us to represent reflections, rotations, stretches, and translations algebraically.
Key Concept: A 2×2 matrix handles reflections, rotations, and stretches. A translation vector handles shifts. Combined, they can represent any transformation.
General Matrix Transformation Form
The Transformation Equation
General Form:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \]
Components:
- \(\begin{pmatrix} x \\ y \end{pmatrix}\): Original point coordinates
- \(\begin{pmatrix} x' \\ y' \end{pmatrix}\): Image point coordinates (after transformation)
- \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\): Transformation matrix (handles rotations, reflections, stretches)
- \(\begin{pmatrix} e \\ f \end{pmatrix}\): Translation vector (handles shifts)
Process for Multiple Points:
- Write coordinates as column vectors
- Multiply by transformation matrix
- Add translation vector
- Result gives image coordinates
Notation:
Often written as: \(\mathbf{x'} = A\mathbf{x} + \mathbf{b}\)
Where A is the transformation matrix and b is translation vector
⚠️ Common Pitfalls & Tips:
- Order matters: matrix multiplication is NOT commutative
- Always apply matrix transformation BEFORE translation
- Use GDC for calculations - faster and more accurate
- Can transform multiple points at once using matrix with multiple columns
Reflections
Mirror Transformations
Common Reflection Matrices:
1. Reflection in x-axis:
\[ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
Effect: (x, y) → (x, -y)
2. Reflection in y-axis:
\[ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]
Effect: (x, y) → (-x, y)
3. Reflection in line y = x:
\[ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
Effect: (x, y) → (y, x) - swaps coordinates
4. Reflection in line y = -x:
\[ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \]
5. Reflection in line y = x tan θ:
\[ \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \]
Formula in IB formula booklet
⚠️ Common Pitfalls & Tips:
- Reflection matrices have determinant ±1
- Reflecting twice returns to original position
- For diagonal reflections, use formula booklet
- Check which axis/line is the mirror
Rotations
Rotation About Origin
Rotation Matrix (Anticlockwise about origin by angle θ):
\[ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \]
In IB formula booklet
Common Rotation Angles:
90° anticlockwise:
\[ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]
180°:
\[ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \]
270° anticlockwise (or 90° clockwise):
\[ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]
Clockwise Rotation:
For clockwise rotation by angle θ, use -θ in the formula:
\[ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \]
⚠️ Common Pitfalls & Tips:
- Default rotation is anticlockwise from positive x-axis
- For clockwise, use negative angle
- Rotation is always about the origin unless stated otherwise
- Check calculator mode (degrees or radians)
Stretches and Enlargements
Scaling Transformations
1. Stretch parallel to x-axis (scale factor k):
\[ \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \]
Effect: (x, y) → (kx, y)
2. Stretch parallel to y-axis (scale factor k):
\[ \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \]
Effect: (x, y) → (x, ky)
3. Enlargement (scale factor k from origin):
\[ \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \]
Effect: (x, y) → (kx, ky)
This scales uniformly in all directions
Properties:
- If k > 1: enlargement (stretches away from axis/origin)
- If 0 < k < 1: reduction (shrinks toward axis/origin)
- If k < 0: stretch/enlargement with reflection
⚠️ Common Pitfalls & Tips:
- Diagonal matrices represent stretches/enlargements
- Determinant = product of diagonal elements = k₁ × k₂
- Area scale factor = |determinant|
- Negative scale factor includes reflection
Translations
Shift Transformations
Translation Vector:
\[ \begin{pmatrix} e \\ f \end{pmatrix} \]
Added to the result of matrix transformation
Effect:
Shifts point by e units horizontally and f units vertically
\[ (x, y) \to (x + e, y + f) \]
Combined with Matrix Transformation:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \]
The translation is applied AFTER the matrix transformation
⚠️ Common Pitfalls & Tips:
- Translation is represented by a vector, not a 2×2 matrix
- Always add translation AFTER matrix multiplication
- Translation does not change shape or size
- Cannot be represented by 2×2 matrix alone
Combined Transformations & Area
Multiple Transformations and Area Effects
Combining Transformations:
To apply transformation B followed by transformation A:
\[ \text{Combined matrix} = AB \]
Important: Apply from right to left (B first, then A)
Area Scale Factor:
When a shape is transformed by matrix A, the area is scaled by:
\[ \text{Area of image} = |\det(A)| \times \text{Area of original} \]
Key Facts About Determinants:
- |det(A)| = 1: Area preserved (reflections, rotations)
- |det(A)| > 1: Area increases (enlargements)
- |det(A)| < 1: Area decreases (reductions)
- det(A) = 0: Shape collapses to line or point
Finding Original Point:
If you know the image and transformation, find original using:
\[ \mathbf{x} = A^{-1}(\mathbf{x'} - \mathbf{b}) \]
⚠️ Common Pitfalls & Tips:
- Order matters: AB ≠ BA in general
- Use absolute value of determinant for area
- Translations don't affect area (not in the matrix)
- Use GDC to find determinants and inverses
📝 Worked Example 1: Applying Transformation
Question: A point P(3, 2) undergoes the transformation \(\mathbf{x'} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}\mathbf{x} + \begin{pmatrix} 4 \\ -1 \end{pmatrix}\). Find the coordinates of the image P'.
Solution:
Step 1: Write point as column vector
\[ \mathbf{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \]
Step 2: Apply matrix transformation
\[ A\mathbf{x} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}\begin{pmatrix} 3 \\ 2 \end{pmatrix} \]
\[ = \begin{pmatrix} 2(3) + (-1)(2) \\ 1(3) + 3(2) \end{pmatrix} = \begin{pmatrix} 6 - 2 \\ 3 + 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} \]
Step 3: Add translation vector
\[ \mathbf{x'} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} + \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \]
Answer: P'(8, 8)
📝 Worked Example 2: Area After Transformation
Question: A triangle has area 12 cm². It is transformed by matrix \(A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}\). Find the area of the image triangle.
Solution:
Step 1: Calculate determinant of transformation matrix
\[ \det(A) = (3)(4) - (1)(2) = 12 - 2 = 10 \]
Step 2: Apply area formula
Area scale factor = |det(A)| = |10| = 10
\[ \text{Area of image} = |\det(A)| \times \text{Original area} \]
\[ = 10 \times 12 = 120 \text{ cm}^2 \]
Answer: 120 cm²
Transformation Matrix Summary
| Transformation | Matrix | Det |
|---|---|---|
| Reflection in x-axis | \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\) | -1 |
| Reflection in y-axis | \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\) | -1 |
| Reflection in y = x | \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) | -1 |
| Rotation θ anticlockwise | \(\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\) | 1 |
| Enlargement scale k | \(\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}\) | k² |
📊 Quick Reference
General Form
- \(\mathbf{x'} = A\mathbf{x} + \mathbf{b}\)
- Matrix first, then translate
- Use GDC for calculations
Area Scale Factor
- Factor = |det(A)|
- Reflections/Rotations: |det| = 1
- New area = factor × old area
Key Matrices
- All in formula booklet
- Check angles (deg/rad)
- Order matters for combinations
Finding Original
- \(\mathbf{x} = A^{-1}(\mathbf{x'} - \mathbf{b})\)
- Subtract translation first
- Then multiply by inverse
✍️ IB Exam Strategy
- Use GDC extensively - enter matrices and let calculator do multiplication
- Show setup: Write the matrix equation before calculating
- For area: Calculate determinant using GDC, take absolute value
- Multiple transformations: Multiply matrices right to left
- Check formula booklet for transformation matrices
- Verify calculator mode (degrees/radians) for rotations
- Label clearly: Original point, transformation, image
- For inverse problems: Rearrange equation first, then solve
🚫 Top Mistakes to Avoid
- Applying translation before matrix transformation (wrong order!)
- Forgetting absolute value when calculating area scale factor
- Multiplying combined transformations in wrong order (AB ≠ BA)
- Using wrong formula from booklet (check carefully)
- Calculator in wrong mode for rotations
- Not writing coordinates as column vectors
- Forgetting to add translation vector at the end
- Confusing transformation matrix with translation vector
- Not showing matrix equation setup (lose method marks)
- Rounding too early - keep full accuracy until final answer