AP Precalculus: Limits – Formulas & Laws
1. Limits – Definition & Graphical Meaning
- \( \displaystyle \lim_{x \to a} f(x) = L \) means as \( x \) approaches \( a \), \( f(x) \) approaches \( L \)
- One-sided limits:
- \( \displaystyle \lim_{x \to a^-} f(x) \): from the left
- \( \displaystyle \lim_{x \to a^+} f(x) \): from the right
- Limit exists if left and right limits are equal and finite
- Jump, infinite, or removable discontinuities: break, asymptote, hole, etc.
2. Limits at Vertical Asymptotes & End Behavior
- Asymptote: \( \displaystyle \lim_{x \to a} f(x) = \pm \infty \)
- End behavior: \( \displaystyle \lim_{x \to \infty} f(x) \), \( \displaystyle \lim_{x \to -\infty} f(x) \)
3. Laws of Limits
- Addition: \( \displaystyle \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)
- Subtraction: \( \displaystyle \lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \)
- Multiplication: \( \displaystyle \lim_{x \to a} [f(x) g(x)] = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)) \)
- Division: \( \displaystyle \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) (if denominator \(\ne 0\))
- Power: \( \displaystyle \lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n \)
- Root: \( \displaystyle \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \) (if root exists)
4. Limits of Polynomials, Rational Functions
- For polynomial \( p(x) \): \( \displaystyle \lim_{x \to a} p(x) = p(a) \)
- For rational \( \frac{p(x)}{q(x)} \), \( q(a) \ne 0 \): limit is \( \frac{p(a)}{q(a)} \)
- If direct substitution gives \( \frac{0}{0} \), factor and simplify
5. Factorization & Rationalization Techniques
- Factor numerator/denominator to cancel common factors
- For square roots: multiply by conjugate to rationalize
- After simplification, use substitution to evaluate limit