AP Precalculus: Series (Arithmetic & Geometric) Formulas
1. Series, Sigma Notation & Types
- Series: Sum of terms in a sequence \( a_1 + a_2 + a_3 + \cdots \)
- Sigma: \( \sum_{k=m}^{n} a_k \) = \( a_m + a_{m+1} + \cdots + a_n \)
- Arithmetic: Each term differs by \( d \)
- Geometric: Each term is multiplied by \( r \)
2. Arithmetic Series (Partial Sum)
- Explicit Sum: \( S_n = a_1 + a_2 + \cdots + a_n \)
- Short Formula: \( S_n = \frac{n}{2}(a_1 + a_n) \)
- Or: \( S_n = \frac{n}{2}[2a_1 + (n-1)d] \)
- \( n \) = number of terms, \( d \) = common difference
3. Geometric Series (Partial Sum)
- For \( r \neq 1 \): \( S_n = a_1 \frac{1 - r^n}{1 - r} \)
- \( S_n \) = sum of first \( n \) terms, \( r \) = common ratio
4. Infinite Geometric Series
- Converges if \( |r| < 1 \): \( S = \frac{a_1}{1 - r} \)
- Diverges if \( |r| \geq 1 \)
5. Partial Sums & Mixed Series
- Partial sum: sum of first \( n \) terms; use above \( S_n \) formulas
- To identify type: check for constant difference (\( d \)) or ratio (\( r \))
- If not clear, expand terms or analyze recursively
6. Repeating Decimal as Fraction
- Write repeating decimal as infinite geometric series
- Find \( a_1 \) (first repeating block), \( r \) (decimal shift), and use \( S = \frac{a_1}{1 - r} \)
- Example: \( 0.\overline{27} = \frac{27}{99} \)