AP Precalculus: Two-Dimensional Vectors Formulas & Properties

1. Magnitude of a Vector

  • For \( \vec{v} = \langle a, b \rangle \), \( |\vec{v}| = \sqrt{a^2 + b^2} \)

2. Component Form

  • From endpoints \( A(x_1, y_1) \), \( B(x_2, y_2) \):
    \( \vec{AB} = \langle x_2-x_1, y_2-y_1 \rangle \)

3. Direction Angle

  • \( \theta = \tan^{-1}\left(\frac{b}{a}\right) \) for \( \vec{v} = \langle a, b \rangle \)
  • Adjust \( \theta \) for correct quadrant

4. Component Form from Magnitude and Direction

  • \( |\vec{v}| = r, \theta = \) direction angle:
  • Component form: \( \vec{v} = \langle r\cos\theta, r\sin\theta \rangle \)

5. Resultant Vector (Sum) Methods

  • Triangle Method: Tail of second vector at tip of first; sum is vector from start to end point.
  • Parallelogram Method: Draw vectors from common point; diagonal is resultant.

6. Vector Addition & Subtraction

  • Add: \( \langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle \)
  • Subtract: \( \langle a, b \rangle - \langle c, d \rangle = \langle a - c, b - d \rangle \)

7. Magnitude & Direction of Vector Sum

  • Add components as above to get resultant \( \vec{R} \)
  • \( |\vec{R}| = \sqrt{(a+c)^2 + (b+d)^2} \)
  • \( \theta_R = \tan^{-1}\left(\frac{b+d}{a+c}\right) \)

8. Scalar Multiplication

  • \( k \cdot \langle a, b \rangle = \langle ka, kb \rangle \)
  • |k·v| = |k||v|; direction unchanged or reversed if \( k < 0 \)

9. Unit Vector

  • Unit vector: magnitude 1, same direction as \( \vec{v} \)
  • \( \mathbf{u} = \frac{\vec{v}}{|\vec{v}|} \)

10. Linear Combinations

  • \( a\vec{v} + b\vec{w} \) = \( a\langle v_1, v_2 \rangle + b\langle w_1, w_2 \rangle = \langle av_1 + bw_1, av_2 + bw_2 \rangle \)