AP Precalculus: Polar Form of Complex Numbers & Conversions
1. Modulus and Argument
- Given \( z = a + bi \):
- Modulus (absolute value): \( r = |z| = \sqrt{a^2 + b^2} \)
- Argument (angle): \( \theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \)
(Adjust for quadrant; use \( \arctan2(b,a) \) if available)
2. Rectangular to Polar Form
- Rectangular: \( z = a + bi \)
- Polar: \( z = r\left(\cos\theta + i\sin\theta\right) \) or \( z = r\operatorname{cis} \theta \)
- Find \( r \) and \( \theta \) as above; plug in to write in polar form.
3. Polar to Rectangular Form
- If \( z = r(\cos\theta + i\sin\theta) \), then
- Real part: \( a = r\cos\theta \)
- Imaginary part: \( b = r\sin\theta \)
- Rectangular: \( z = a + bi \)
4. Converting Between Forms
- Rectangular to Polar: Find \( r, \theta \) as above and write \( z = r\operatorname{cis}\theta \)
- Polar to Rectangular: \( z = r\cos\theta + i r\sin\theta \)
- "cis" notation: \( \operatorname{cis}\theta = \cos\theta + i\sin\theta \)
5. Match Polar Equations & Graphs (Basics)
- Points in polar: \( (r, \theta) \)
- Complex numbers in polar: on plane, angle \( \theta \) from positive real axis, modulus as radius
- Common polar graphs: circles (\( r = a \)), lines (\( \theta = \alpha \)), spirals, roses etc.