AP Precalculus: Polar Form of Complex Numbers

Master modulus, argument, and conversions between rectangular and polar forms

πŸ“ Modulus πŸ”„ Argument ↔️ Conversions πŸ“Š Polar Graphs

πŸ“š Understanding Polar Form

While rectangular form \(a + bi\) describes a complex number by its horizontal and vertical components, polar form uses distance from the origin (modulus) and angle from the positive real axis (argument). This representation is especially useful for multiplication, division, and powers of complex numbers.

1 Modulus and Argument

Every complex number \(z = a + bi\) can be described by two polar components: the modulus (distance from origin) and the argument (angle from positive real axis).

Modulus (r)
\(r = |z| = \sqrt{a^2 + b^2}\)
Argument (ΞΈ)
\(\theta = \arg(z) = \arctan\left(\frac{b}{a}\right)\)
⚠️ Quadrant Adjustment

The basic \(\arctan\left(\frac{b}{a}\right)\) only gives angles in Quadrants I and IV. You must adjust based on the signs of \(a\) and \(b\)!

Quadrant Adjustment Rules

Quadrant Signs (a, b) Argument Formula
I \(a > 0, b > 0\) \(\theta = \arctan\left(\frac{b}{a}\right)\)
II \(a < 0, b> 0\) \(\theta = \pi + \arctan\left(\frac{b}{a}\right)\)
III \(a < 0, b < 0\) \(\theta = \pi + \arctan\left(\frac{b}{a}\right)\)
IV \(a > 0, b < 0\) \(\theta = 2\pi + \arctan\left(\frac{b}{a}\right)\)
πŸ’‘ Principal Argument

The principal argument is typically in the range \((-\pi, \pi]\) or \([0, 2\pi)\). Be consistent with which convention you use.

2 Polar Form Notation

Once you have modulus \(r\) and argument \(\theta\), you can write the complex number in polar form.

Polar Form \(z = r(\cos\theta + i\sin\theta)\)
CIS Notation (Shorthand) \(z = r \operatorname{cis} \theta\)   where   \(\operatorname{cis}\theta = \cos\theta + i\sin\theta\)
Euler's Form (Advanced) \(z = re^{i\theta}\)

Rectangular Form

\(z = a + bi\)
Uses x-y coordinates

Polar Form

\(z = r \operatorname{cis} \theta\)
Uses radius-angle coordinates

3 Converting Rectangular to Polar

Given \(z = a + bi\), find \(r\) and \(\theta\) to write in polar form.

  1. Calculate modulus: \(r = \sqrt{a^2 + b^2}\)
  2. Find reference angle: \(\alpha = \arctan\left|\frac{b}{a}\right|\)
  3. Determine quadrant from signs of \(a\) and \(b\)
  4. Adjust angle \(\theta\) based on quadrant
  5. Write: \(z = r(\cos\theta + i\sin\theta)\) or \(z = r \operatorname{cis} \theta\)
πŸ“Œ Example

Convert to polar: \(z = -1 + \sqrt{3}i\)

Modulus: \(r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2\)

Reference angle: \(\arctan\left|\frac{\sqrt{3}}{-1}\right| = \arctan(\sqrt{3}) = \frac{\pi}{3}\)

Quadrant: \(a < 0, b> 0\) β†’ Quadrant II

Argument: \(\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}\)

Polar form: \(z = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2 \operatorname{cis} \frac{2\pi}{3}\)

4 Converting Polar to Rectangular

Given \(z = r \operatorname{cis} \theta\), find \(a\) and \(b\) to write in rectangular form.

Find Real Part
\(a = r\cos\theta\)
↓
Multiply modulus by cosine
Find Imaginary Part
\(b = r\sin\theta\)
↓
Multiply modulus by sine
Polar to Rectangular \(z = r(\cos\theta + i\sin\theta) = r\cos\theta + i \cdot r\sin\theta = a + bi\)
πŸ“Œ Example

Convert to rectangular: \(z = 4 \operatorname{cis} \frac{\pi}{6}\)

Real part: \(a = 4\cos\frac{\pi}{6} = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}\)

Imaginary part: \(b = 4\sin\frac{\pi}{6} = 4 \cdot \frac{1}{2} = 2\)

Rectangular form: \(z = 2\sqrt{3} + 2i\)

5 Operations in Polar Form

Polar form makes multiplication, division, and powers much easier β€” just work with modulus and argument separately!

Multiplication
\(z_1 \cdot z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)\)
Multiply moduli, add arguments
Division
\(\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)\)
Divide moduli, subtract arguments
πŸ“Œ Example: Multiplication

Given: \(z_1 = 3 \operatorname{cis} \frac{\pi}{4}\) and \(z_2 = 2 \operatorname{cis} \frac{\pi}{6}\)

Product: \(z_1 \cdot z_2 = (3)(2) \operatorname{cis}\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = 6 \operatorname{cis} \frac{5\pi}{12}\)

πŸ’‘ Why Polar is Powerful

In rectangular form, multiplying \((a+bi)(c+di)\) requires FOIL. In polar form, just multiply the lengths and add the angles!

6 De Moivre's Theorem (Powers)

De Moivre's Theorem provides a formula for raising a complex number to any power.

De Moivre's Theorem \([r \operatorname{cis} \theta]^n = r^n \operatorname{cis}(n\theta)\)
πŸ“Œ Example

Calculate: \((1 + i)^6\)

Convert to polar: \(r = \sqrt{1^2 + 1^2} = \sqrt{2}\), \(\theta = \frac{\pi}{4}\)

So \(1 + i = \sqrt{2} \operatorname{cis} \frac{\pi}{4}\)

Apply De Moivre: \((\sqrt{2})^6 \operatorname{cis}\left(6 \cdot \frac{\pi}{4}\right) = 8 \operatorname{cis} \frac{3\pi}{2}\)

Convert back: \(8\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = 8(0 - i) = -8i\)

7 Common Polar Graphs

In polar coordinates, points are given as \((r, \theta)\). Understanding common polar equations helps visualize complex number relationships.

Circle (centered at origin)
\(r = a\) (constant)
Line through origin
\(\theta = \alpha\) (constant)
Cardioid
\(r = a(1 + \cos\theta)\)
Rose Curve
\(r = a\cos(n\theta)\)
Spiral
\(r = a\theta\)
Lemniscate
\(r^2 = a^2\cos(2\theta)\)

πŸ“‹ Quick Reference

Modulus

\(r = \sqrt{a^2 + b^2}\)

Argument

\(\theta = \arctan\left(\frac{b}{a}\right)\) + quadrant adj.

Polar Form

\(r \operatorname{cis} \theta\) or \(r(\cos\theta + i\sin\theta)\)

To Rectangular

\(a = r\cos\theta\), \(b = r\sin\theta\)

Multiply/Divide

Multiply/divide \(r\), add/subtract \(\theta\)

De Moivre's

\([r \operatorname{cis} \theta]^n = r^n \operatorname{cis}(n\theta)\)

Need Help with Polar Form?

Our expert tutors provide personalized instruction to help you excel in AP Precalculus.

Book Free Consultation