AP Precalculus: Polar Form of Complex Numbers & Conversions

1. Modulus and Argument

  • Given \( z = a + bi \):
  • Modulus (absolute value): \( r = |z| = \sqrt{a^2 + b^2} \)
  • Argument (angle): \( \theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \)
    (Adjust for quadrant; use \( \arctan2(b,a) \) if available)

2. Rectangular to Polar Form

  • Rectangular: \( z = a + bi \)
  • Polar: \( z = r\left(\cos\theta + i\sin\theta\right) \) or \( z = r\operatorname{cis} \theta \)
  • Find \( r \) and \( \theta \) as above; plug in to write in polar form.

3. Polar to Rectangular Form

  • If \( z = r(\cos\theta + i\sin\theta) \), then
    • Real part: \( a = r\cos\theta \)
    • Imaginary part: \( b = r\sin\theta \)
    • Rectangular: \( z = a + bi \)

4. Converting Between Forms

  • Rectangular to Polar: Find \( r, \theta \) as above and write \( z = r\operatorname{cis}\theta \)
  • Polar to Rectangular: \( z = r\cos\theta + i r\sin\theta \)
  • "cis" notation: \( \operatorname{cis}\theta = \cos\theta + i\sin\theta \)

5. Match Polar Equations & Graphs (Basics)

  • Points in polar: \( (r, \theta) \)
  • Complex numbers in polar: on plane, angle \( \theta \) from positive real axis, modulus as radius
  • Common polar graphs: circles (\( r = a \)), lines (\( \theta = \alpha \)), spirals, roses etc.