AP Precalculus: Polar Form of Complex Numbers
Master modulus, argument, and conversions between rectangular and polar forms
π Understanding Polar Form
While rectangular form \(a + bi\) describes a complex number by its horizontal and vertical components, polar form uses distance from the origin (modulus) and angle from the positive real axis (argument). This representation is especially useful for multiplication, division, and powers of complex numbers.
1 Modulus and Argument
Every complex number \(z = a + bi\) can be described by two polar components: the modulus (distance from origin) and the argument (angle from positive real axis).
The basic \(\arctan\left(\frac{b}{a}\right)\) only gives angles in Quadrants I and IV. You must adjust based on the signs of \(a\) and \(b\)!
Quadrant Adjustment Rules
| Quadrant | Signs (a, b) | Argument Formula |
|---|---|---|
| I | \(a > 0, b > 0\) | \(\theta = \arctan\left(\frac{b}{a}\right)\) |
| II | \(a < 0, b> 0\) | \(\theta = \pi + \arctan\left(\frac{b}{a}\right)\) |
| III | \(a < 0, b < 0\) | \(\theta = \pi + \arctan\left(\frac{b}{a}\right)\) |
| IV | \(a > 0, b < 0\) | \(\theta = 2\pi + \arctan\left(\frac{b}{a}\right)\) |
The principal argument is typically in the range \((-\pi, \pi]\) or \([0, 2\pi)\). Be consistent with which convention you use.
2 Polar Form Notation
Once you have modulus \(r\) and argument \(\theta\), you can write the complex number in polar form.
Rectangular Form
\(z = a + bi\)
Uses x-y coordinates
Polar Form
\(z = r \operatorname{cis} \theta\)
Uses radius-angle coordinates
3 Converting Rectangular to Polar
Given \(z = a + bi\), find \(r\) and \(\theta\) to write in polar form.
- Calculate modulus: \(r = \sqrt{a^2 + b^2}\)
- Find reference angle: \(\alpha = \arctan\left|\frac{b}{a}\right|\)
- Determine quadrant from signs of \(a\) and \(b\)
- Adjust angle \(\theta\) based on quadrant
- Write: \(z = r(\cos\theta + i\sin\theta)\) or \(z = r \operatorname{cis} \theta\)
Convert to polar: \(z = -1 + \sqrt{3}i\)
Modulus: \(r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2\)
Reference angle: \(\arctan\left|\frac{\sqrt{3}}{-1}\right| = \arctan(\sqrt{3}) = \frac{\pi}{3}\)
Quadrant: \(a < 0, b> 0\) β Quadrant II
Argument: \(\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}\)
Polar form: \(z = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2 \operatorname{cis} \frac{2\pi}{3}\)
4 Converting Polar to Rectangular
Given \(z = r \operatorname{cis} \theta\), find \(a\) and \(b\) to write in rectangular form.
Convert to rectangular: \(z = 4 \operatorname{cis} \frac{\pi}{6}\)
Real part: \(a = 4\cos\frac{\pi}{6} = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}\)
Imaginary part: \(b = 4\sin\frac{\pi}{6} = 4 \cdot \frac{1}{2} = 2\)
Rectangular form: \(z = 2\sqrt{3} + 2i\)
5 Operations in Polar Form
Polar form makes multiplication, division, and powers much easier β just work with modulus and argument separately!
Given: \(z_1 = 3 \operatorname{cis} \frac{\pi}{4}\) and \(z_2 = 2 \operatorname{cis} \frac{\pi}{6}\)
Product: \(z_1 \cdot z_2 = (3)(2) \operatorname{cis}\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = 6 \operatorname{cis} \frac{5\pi}{12}\)
In rectangular form, multiplying \((a+bi)(c+di)\) requires FOIL. In polar form, just multiply the lengths and add the angles!
6 De Moivre's Theorem (Powers)
De Moivre's Theorem provides a formula for raising a complex number to any power.
Calculate: \((1 + i)^6\)
Convert to polar: \(r = \sqrt{1^2 + 1^2} = \sqrt{2}\), \(\theta = \frac{\pi}{4}\)
So \(1 + i = \sqrt{2} \operatorname{cis} \frac{\pi}{4}\)
Apply De Moivre: \((\sqrt{2})^6 \operatorname{cis}\left(6 \cdot \frac{\pi}{4}\right) = 8 \operatorname{cis} \frac{3\pi}{2}\)
Convert back: \(8\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = 8(0 - i) = -8i\)
7 Common Polar Graphs
In polar coordinates, points are given as \((r, \theta)\). Understanding common polar equations helps visualize complex number relationships.
π Quick Reference
Modulus
\(r = \sqrt{a^2 + b^2}\)
Argument
\(\theta = \arctan\left(\frac{b}{a}\right)\) + quadrant adj.
Polar Form
\(r \operatorname{cis} \theta\) or \(r(\cos\theta + i\sin\theta)\)
To Rectangular
\(a = r\cos\theta\), \(b = r\sin\theta\)
Multiply/Divide
Multiply/divide \(r\), add/subtract \(\theta\)
De Moivre's
\([r \operatorname{cis} \theta]^n = r^n \operatorname{cis}(n\theta)\)
Need Help with Polar Form?
Our expert tutors provide personalized instruction to help you excel in AP Precalculus.
Book Free Consultation