AP Precalculus: Conic Sections Formulas & Properties

1. Parabola

  • Vertex form (vertical): \( y = a(x - h)^2 + k \)
  • Vertex: \( (h, k) \)
  • Focus: \( (h, k + \frac{1}{4a}) \)
  • Directrix: \( y = k - \frac{1}{4a} \)
  • Axis of symmetry: \( x = h \)
  • Horizontal parabolas: \( x = a(y-k)^2 + h \)

2. Circle

  • Standard form: \( (x-h)^2 + (y-k)^2 = r^2 \)
  • Center: \( (h, k) \)
  • Radius: \( r \)
  • All circles have eccentricity \( e = 0 \)

3. Ellipse

  • Standard (horizontal): \( \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1 \), \( a > b \)
  • Center: \( (h, k) \)
  • Vertices: \( (h\pm a, k) \)
  • Foci: \( (h\pm c, k) \) where \( c = \sqrt{a^2-b^2} \)
  • Minor axis: length \( 2b \)
  • Major axis: length \( 2a \)
  • Eccentricity: \( e = \frac{c}{a} \), \( 0 < e < 1 \)
  • Vertical ellipse: switch \( a \) and \( b \) positions (major axis along y)

4. Hyperbola

  • Standard (horizontal): \( \frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1 \)
  • Center: \( (h, k) \)
  • Vertices: \( (h\pm a, k) \)
  • Foci: \( (h\pm c, k) \), \( c = \sqrt{a^2+b^2} \)
  • Transverse axis: length \( 2a \)
  • Conjugate axis: length \( 2b \)
  • Eccentricity: \( e = \frac{c}{a} \), \( e > 1 \)
  • Vertical hyperbola: \( \frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1 \)
  • Asymptotes: \( y-k = \pm \frac{b}{a}(x-h) \)

5. Convert to Standard Form

  • General conic: \( Ax^2 + By^2 + Cx + Dy + E = 0 \)
  • Complete the square for \( x \) and \( y \)
  • Divide both sides and arrange as required to match standard form for each conic