AP Precalculus: Trigonometric Identities & Properties

1. Complementary Angle Identities

  • \( \sin(90^\circ - x) = \cos x \),   \( \cos(90^\circ - x) = \sin x \)
  • \( \tan(90^\circ - x) = \cot x \),   \( \cot(90^\circ - x) = \tan x \)
  • \( \sec(90^\circ - x) = \csc x \),   \( \csc(90^\circ - x) = \sec x \)

2. Symmetry & Periodicity

  • Even Functions: \( \cos(-x) = \cos x \), \( \sec(-x) = \sec x \)
  • Odd Functions: \( \sin(-x) = -\sin x \), \( \tan(-x) = -\tan x \), etc.
  • Periodicity: \( \sin(x + 2\pi) = \sin x \), \( \cos(x+2\pi) = \cos x \), \( \tan(x+\pi) = \tan x \)

3. Pythagorean & Reciprocal Identities

  • Pythagorean: \( \sin^2 x + \cos^2 x = 1 \)
  • \( 1 + \tan^2 x = \sec^2 x \)
  • \( 1 + \cot^2 x = \csc^2 x \)
  • Reciprocal:
    • \( \sin x = \frac{1}{\csc x} \), \( \cos x = \frac{1}{\sec x} \)
    • \( \tan x = \frac{1}{\cot x} \), \( \cot x = \frac{1}{\tan x} \)

4. Express a Trig Ratio in Terms of Another

  • Use pythagorean and reciprocal identities to go from one ratio to another (e.g., \( \tan x = \frac{\sin x}{\cos x} \), \( \sec x = \frac{1}{\cos x} \))
  • Often: you solve for one unknown by substituting known values

5. Sum & Difference Identities

  • \( \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \)
  • \( \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \)
  • \( \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \)