AP Precalculus: Matrices
Master matrix operations, determinants, inverses, and transformations
π Understanding Matrices
A matrix is a rectangular array of numbers arranged in rows and columns. Matrices are essential tools for solving systems of equations, describing transformations, and organizing data. This guide covers vocabulary, operations, determinants, inverses, and geometric transformations.
1 Matrix Vocabulary
A matrix is a rectangular array of numbers. The dimensions are written as \(m \times n\) (rows Γ columns).
Identity Matrix \(I_n\)
For any matrix \(A\): \(AI = IA = A\). The identity matrix acts like multiplying by 1.
2 Matrix Addition & Subtraction
To add or subtract matrices, they must have the same dimensions. Add or subtract corresponding elements.
\(\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 2+5 & 3+1 \\ 1+2 & 4+3 \end{pmatrix} = \begin{pmatrix} 7 & 4 \\ 3 & 7 \end{pmatrix}\)
You cannot add a 2Γ3 matrix to a 3Γ2 matrix. Dimensions must match exactly!
3 Scalar Multiplication
Scalar multiplication multiplies every element of a matrix by a constant (scalar).
\(3 \cdot \begin{pmatrix} 2 & -1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 12 & 0 \end{pmatrix}\)
Combined Operations
Find \(2A - 3B\) where \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\) and \(B = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}\)
\(2A = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}\), \(3B = \begin{pmatrix} 0 & 3 \\ 6 & 3 \end{pmatrix}\)
\(2A - 3B = \begin{pmatrix} 2-0 & 4-3 \\ 6-6 & 8-3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}\)
4 Matrix Multiplication
Matrix multiplication requires the number of columns in the first matrix to equal the number of rows in the second matrix. The result has dimensions from the outer numbers.
\(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}\)
Row 1 Γ Col 1: \(1(5) + 2(7) = 5 + 14 = 19\)
Row 1 Γ Col 2: \(1(6) + 2(8) = 6 + 16 = 22\)
Row 2 Γ Col 1: \(3(5) + 4(7) = 15 + 28 = 43\)
Row 2 Γ Col 2: \(3(6) + 4(8) = 18 + 32 = 50\)
Result: \(\begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}\)
Matrix multiplication is NOT commutative: \(AB \neq BA\) in general. Order matters!
5 Properties of Matrix Operations
Matrix operations follow specific algebraic properties similar to (but not identical to) number properties.
\(A(BC) = (AB)C\)
\((A + B)C = AC + BC\)
6 Determinant of a Matrix
The determinant is a scalar value calculated from a square matrix. It determines whether a matrix is invertible and has geometric meaning (area/volume scaling).
2Γ2 Determinant
\(\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc\)
"Main diagonal minus off diagonal"
3Γ3 Determinant
Expand by minors (cofactors) along any row or column, OR use Sarrus' Rule for diagonals
\(\det\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} = (3)(4) - (2)(1) = 12 - 2 = 10\)
\(\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\)
\(= 1 \cdot \det\begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} - 2 \cdot \det\begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \cdot \det\begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}\)
\(= 1(45-48) - 2(36-42) + 3(32-35)\)
\(= 1(-3) - 2(-6) + 3(-3) = -3 + 12 - 9 = 0\)
A matrix is invertible if and only if its determinant is NOT zero: \(\det(A) \neq 0\).
7 Inverse of a Matrix
The inverse of matrix \(A\), denoted \(A^{-1}\), satisfies \(AA^{-1} = A^{-1}A = I\). Only square matrices with non-zero determinant have inverses.
Steps for 2Γ2 Inverse
- Calculate the determinant \(ad - bc\)
- Check that determinant \(\neq 0\) (otherwise, no inverse exists)
- Swap the main diagonal elements (\(a\) and \(d\))
- Change signs of off-diagonal elements (\(b\) and \(c\))
- Multiply by \(\frac{1}{\det}\)
Find the inverse of \(A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}\)
Determinant: \((4)(2) - (3)(3) = 8 - 9 = -1\)
Inverse: \(A^{-1} = \frac{1}{-1} \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}\)
where adj(A) is the adjugate (transpose of cofactor matrix)
8 Solving Matrix Equations
Matrix equations can be solved using the inverse matrix, similar to dividing both sides by the coefficient in algebra.
System: \(\begin{cases} 2x + 3y = 7 \\ x + 2y = 4 \end{cases}\)
Matrix form: \(\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}\)
Find inverse: \(\det = 4 - 3 = 1\)
\(A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}\)
Solve: \(\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 14-12 \\ -7+8 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}\)
Solution: \(x = 2\), \(y = 1\)
9 Transformation Matrices
Transformation matrices perform geometric transformations on points. To transform point \((x, y)\), multiply: \(\begin{pmatrix} x' \\ y' \end{pmatrix} = M \begin{pmatrix} x \\ y \end{pmatrix}\)
Rotate point \((3, 2)\) by 90Β° counterclockwise:
\(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0(3) + (-1)(2) \\ 1(3) + 0(2) \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}\)
To transform a shape, put all vertices as columns in a matrix and multiply by the transformation matrix. Each column of the result is a transformed vertex!
π Quick Reference
Addition
Same dimensions required
Multiplication
Inner dimensions must match
2Γ2 Determinant
\(ad - bc\)
2Γ2 Inverse
\(\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}\)
Invertible
\(\det(A) \neq 0\)
Solve \(AX = B\)
\(X = A^{-1}B\)
Need Help with Matrices?
Our expert tutors provide personalized instruction to help you excel in AP Precalculus.
Book Free Consultation