AP Precalculus: Logarithmic Functions Formulas & Graphs

1. Logarithmic Function General Form

\( f(x) = a\log_b(x-h) + k \)
- \( a \) is a stretch/compression/reflection
- \( b \) is the base (\( b>0, b \neq 1 \))
- \( h \) shifts horizontally; \( k \) vertically

2. Domain and Range

  • Domain: \( x-h > 0 \)   (so \( x > h \))
  • Range: all real numbers (\( -\infty < y < \infty \))
  • Vertical asymptote: \( x = h \)

3. Graphing Logarithmic Functions

  • Basic: \( f(x) = \log_b x \)
    • Domain: \( x > 0 \); Range: all reals; Vertical asymptote: \( x = 0 \)
  • If \( a > 0 \): Increases right, passes through \( (1,0) \) if no shift
  • If \( a < 0 \): Decreases right (reflected in x-axis)
  • Horizontal shift: Right by \( h \); graph’s vertical asymptote at \( x = h \)
  • Vertical shift: Moves curve up or down by \( k \)
Intercept: \( x = h+1 \) gives \( y=k \) (since \( \log_b 1 = 0 \))