AP Precalculus: Quadratic Functions Formulas & Concepts
Quadratic Function Standard Form
General form: \( f(x) = ax^2 + bx + c \)
- \( a \neq 0 \)
- Opens up if \( a > 0 \), down if \( a < 0 \)
- Parabola’s axis of symmetry: \( x = -\frac{b}{2a} \)
Maximum / Minimum Value
Vertex formula:
\( x_\text{vertex} = -\frac{b}{2a} \)
\( y_\text{vertex} = f(-\frac{b}{2a}) \)
If \( a > 0 \): minimum point; If \( a < 0 \): maximum point
Graphing a Quadratic
- Shape: parabola
- Vertex: \( \left(-\frac{b}{2a}, f(-\frac{b}{2a}) \right) \)
- Axis of symmetry: \( x = -\frac{b}{2a} \)
- Y-intercept: \( c \)
- X-intercepts: Solve \( ax^2 + bx + c = 0 \) (roots)
Matching Quadratic Functions & Graphs
- If \( a > 0 \), opens up; if \( a < 0 \), opens down
- Width determined by \( |a| \): larger \( |a| \) = narrower parabola
- \( b \) shifts vertex side-to-side; \( c \) is the y-intercept
- Identify with vertex, axis, intercepts
Solving Quadratics by Square Roots
If \( ax^2 = k \):\( x = \pm\sqrt{\frac{k}{a}} \)
Solving by Factoring
\( ax^2 + bx + c = 0 \Rightarrow (dx+p)(ex+q)=0 \)Set each factor to zero: \( dx + p = 0 \), \( ex + q = 0 \); solve for \( x \)
Completing the Square
Rearrange: \( x^2 + bx = -c \)Add \( \left(\frac{b}{2}\right)^2 \) to both sides:
\( x^2 + bx + \left(\frac{b}{2}\right)^2 = -c + \left(\frac{b}{2}\right)^2 \)
Factor left: \( (x+\frac{b}{2})^2 = \text{right side} \)
Quadratic Formula
\( x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{2a} \)- Always works to solve \( ax^2 + bx + c = 0 \)
- \( \pm \): get two solutions unless the radical is zero
Using the Discriminant
\( D = b^2 - 4ac \)- If \( D > 0 \): two real solutions
- If \( D = 0 \): one real solution
- If \( D < 0 \): two complex solutions
Quadratic Word Problems
- Identify quantities that fit \( ax^2 + bx + c \)- Solutions may represent maxima/minima, intercepts, or times.