AP Precalculus: Function Transformations Formulas

General Transformation Formula

\( g(x) = a\cdot f(b(x - h)) + k \)

  • \(h\): horizontal translation (right if \(h>0\), left if \(h<0\))
  • \(k\): vertical translation (up if \(k>0\), down if \(k<0\))
  • \(a\): vertical stretch/compression (\(|a|>1\) stretches, \(0<|a|<1\) compresses); \(a<0\) also reflects over x-axis
  • \(b\): horizontal stretch/compression (\(|b|>1\) compresses, \(0<|b|<1\) stretches); \(b<0\) also reflects over y-axis
Order of operations: Horizontal shift/scale first, then vertical transformations.

1. Translations (Shifts)

  • Horizontal Shift: \( f(x-h) \): right by \(h\) units; \( f(x+h) \): left by \(h\) units
  • Vertical Shift: \( f(x) + k \): up by \(k\) units;
    \( f(x) - k \): down by \(k\) units
Example: \( g(x) = f(x-3) + 2 \) = shift \(f(x)\) right 3 units and up 2 units

2. Reflections

  • Over x-axis: \( -f(x) \) (flips output up/down)
  • Over y-axis: \( f(-x) \) (flips input left/right)
Example: Reflection of \(f(x)\) over x-axis: \(g(x) = -f(x)\)

3. Dilations (Stretches/Compressions)

  • Vertical Dilation: \( a \cdot f(x) \)
      \(|a|>1\): vertical stretch (taller)
      \(0<|a|<1\): vertical compression (shorter)
      \(a<0\): includes reflection over x-axis
  • Horizontal Dilation: \( f(bx) \)
      \(|b|>1\): horizontal compression (narrower)
      \(0<|b|<1\): horizontal stretch (wider)
      \(b<0\): includes reflection over y-axis
Example: \( g(x) = 2f(x) \) is twice as tall; \( g(x) = f(2x) \) is half as wide

4. Describe/Combine Transformations

To break down \( g(x) = -3f(2(x+4)) - 5 \):

  1. Start with parent function \(f(x)\)
  2. Shift left by 4 (replace x with x+4)
  3. Compress horizontally by factor 1/2 (\(f(2x)\))
  4. Stretch vertically by 3, reflect over x-axis (\(-3f(...)\))
  5. Shift down by 5
Order: horizontal shifts/dilations/reflections → vertical dilations/reflections → vertical shifts

Mapping Points Rule

If point \((x_0, y_0)\) is on \( f(x) \), then on \( g(x) = a f(b(x-h)) + k \), its image is:
\[ \left( x = \frac{x_0}{b} + h,\quad y = a y_0 + k \right) \]
Use this to quickly find and predict new key points!