All Math Formulas
A math Guide for Students: Arithmetic, Algebra, Geometry, Trigonometry, Calculus, Probability & More
1. Arithmetic and Number Theory
- Order of Operations (PEMDAS/BODMAS):
\( P \rightarrow E \rightarrow MD \rightarrow AS \) (Left-to-right within pairs) - Prime Factorization: Any integer \( n \) can be factored as \( n = p_1^{a_1} p_2^{a_2} \ldots p_k^{a_k} \)
- Divisibility Rules and Tricks:
A number is divisible by 3 if sum of digits is divisible by 3.
By 4: If last 2 digits are divisible by 4.
By 9: If sum of digits is divisible by 9. - HCF/LCD:
HCF (\(\gcd(a,b)\)): Highest Common Factor
LCM (\(\mathrm{lcm}(a,b)\)): Lowest Common Multiple - Percentage: \( \text{Percentage} = \frac{\text{Part}}{\text{Whole}} \times 100\% \)
- Simple Interest: \( SI = \frac{P \cdot R \cdot T}{100} \)
- Compound Interest: \( CI = P \left(1+\frac{R}{100}\right)^T - P \)
- Average/Mean: \( \bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_i \)
- Sum of First \( n \) Natural Numbers: \( S_n = \frac{n(n+1)}{2} \)
- Sum of First \( n \) Squares: \( S_n = \frac{n(n+1)(2n+1)}{6} \)
- Sum of First \( n \) Cubes: \( S_n = \left[\frac{n(n+1)}{2}\right]^2 \)
2. Algebra
- Laws of Exponents:\( a^m \times a^n = a^{m+n} \)
\( \frac{a^m}{a^n} = a^{m-n} \)
\( (a^m)^n = a^{mn} \)
\( (ab)^n = a^n b^n \)
\( a^0 = 1 \) - Quadratic Formula:
\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) - Algebraic Identities:
\( (a+b)^2 = a^2 + 2ab + b^2 \)
\( (a-b)^2 = a^2 - 2ab + b^2 \)
\( a^2 - b^2 = (a+b)(a-b) \)
\( (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \)
\( (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \)
\( a^3 + b^3 = (a+b)(a^2 - ab + b^2) \)
\( a^3 - b^3 = (a-b)(a^2 + ab + b^2) \) - Slope-Intercept Line Equation: \( y = mx + c \), slope \( m = \frac{y_2 - y_1}{x_2 - x_1} \)
- Distance Formula: \( d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \)
- Midpoint Formula: \( M = \left(\frac{x_1 + x_2}{2},\; \frac{y_1 + y_2}{2}\right) \)
- Arithmetic Sequence: \( a_n = a_1 + (n-1)d \), Arithmetic Series: \( S_n = \frac{n}{2}[2a_1 + (n-1)d] \)
- Geometric Sequence: \( a_n = a_1 \, r^{n-1} \), Geometric Series: \( S_n = a_1 \frac{r^n - 1}{r-1} \)
- Sum to Infinity of Geometric Series (\(|r| < 1\)): \( S = \frac{a_1}{1 - r} \)
- Binomial Theorem:
\( (a+b)^n = \sum_{k=0}^{n}C_n^k a^{n-k}b^k \)
3. Geometry
- Perimeter of Square: \( P = 4a \)
- Perimeter of Rectangle: \( P = 2(l + b) \)
- Area of Square: \( A = a^2 \)
- Area of Rectangle: \( A = lb \)
- Area of Triangle: \( A = \frac{1}{2} b h \)
- Area of Parallelogram: \( A = b h \)
- Area of Trapezoid: \( A = \frac{1}{2} (b_1 + b_2) h \)
- Area of Circle: \( A = \pi r^2 \)
- Circumference of Circle: \( C = 2\pi r \)
- Pythagoras Theorem: \( a^2 + b^2 = c^2 \)
- Volume of Cube: \( V = a^3 \)
- Volume of Rectangular Prism: \( V = lwh \)
- Volume of Sphere: \( V = \frac{4}{3}\pi r^3 \)
- Surface Area of Sphere: \( SA = 4\pi r^2 \)
- Volume of Cylinder: \( V = \pi r^2 h \)
- Surface Area of Cylinder: \( SA = 2\pi r(r + h) \)
- Volume of Cone: \( V = \frac{1}{3}\pi r^2 h \)
- Area of Sector: \( A = \frac{\theta}{360^\circ} \pi r^2 \)
- Arc Length: \( L = \frac{\theta}{360^\circ} 2\pi r \)
4. Trigonometry
- Basic Ratios:
\( \sin\theta = \frac{\text{Opposite}}{\text{Hypotenuse}} \) \( \cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} \) \( \tan\theta = \frac{\text{Opposite}}{\text{Adjacent}} \) - Pythagorean Identities:
\( \sin^2\theta + \cos^2\theta = 1 \) - Co-Function Identities:
\( \sin(90^\circ - \theta) = \cos\theta \), \( \tan(90^\circ - \theta) = \cot\theta \) - Angle Sum/Difference:\( \sin(A\pm B) = \sin A \cos B \pm \cos A \sin B \)
\( \cos(A\pm B) = \cos A \cos B \mp \sin A \sin B \) - Double Angle:\( \sin 2A = 2\sin A\cos A \)
\( \cos 2A = \cos^2 A - \sin^2 A \ = 2\cos^2 A - 1 = 1-2\sin^2A \) - Law of Sines:
\( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \) - Law of Cosines:
\( c^2 = a^2 + b^2 - 2ab\cos C \) - Area of Triangle (Sine formula):
\( A = \frac{1}{2}ab\sin C \) - Radian-Degree Conversion: \( 180^\circ = \pi \) radians
5. Calculus (Differential & Integral)
-
Differentiation:
\( \frac{d}{dx} x^n = n x^{n-1} \)
\( \frac{d}{dx} \sin x = \cos x \)
\( \frac{d}{dx} \cos x = -\sin x \)
\( \frac{d}{dx} e^x = e^x \)
\( \frac{d}{dx} \ln x = \frac{1}{x} \) -
Integration:
\( \int x^n dx = \frac{x^{n+1}}{n+1} + C \), \( n\neq -1\)
\( \int e^x dx = e^x + C \)
\( \int \sin x dx = -\cos x + C \)
\( \int \cos x dx = \sin x + C \)
\( \int \frac{1}{x} dx = \ln|x| + C \) - Definite Integral as Area:\( \text{Area} = \int_a^b f(x)\,dx \)
- Product Rule: \( (uv)' = u'v + uv' \)
- Quotient Rule: \( \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \)
- Chain Rule: \( \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \)
- Taylor Expansion (about \( x=a \)): \( f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots \)
- Limit Definition (Derivative):
\( f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \) - Fundamental Theorem:
If \( F' = f \), then \( \int_a^b f(x)dx = F(b) - F(a) \)
6. Probability and Statistics
- Basic Probability: \( P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} \)
- Addition Rule: \( P(A \text{ or } B) = P(A) + P(B) - P(A \cap B) \)
- Multiplication Rule: \( P(A \cap B) = P(A) \cdot P(B|A) \)
- Conditional Probability: \( P(A|B) = \frac{P(A \cap B)}{P(B)} \)
- Mean: \( \mu = \frac{1}{n}\sum_{i=1}^n x_i \)
- Median: Middle value in ordered data
- Variance: \( \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i - \mu)^2 \)
- Standard Deviation: \( \sigma = \sqrt{Variance} \)
- Binomial Theorem (repetition): \( P(k,n) = C_n^k \, p^k (1-p)^{n-k} \)
- Permutation: \( nPr = \frac{n!}{(n-r)!} \), Combination: \( nCr = \frac{n!}{r!(n-r)!} \)
- Z-Score: \( z = \frac{x - \mu}{\sigma} \)
- Normal Distribution:
\( f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac12 \left( \frac{x-\mu}{\sigma}\right)^2} \)
7. Additional Topics & Math Tricks
- Logarithm Laws:
\( \log_b(xy) = \log_b x + \log_b y \)
\( \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y \)
\( \log_b(x^r) = r \log_b x \) - Complex Number Formulas:
Standard: \( z = a+bi \)
Modulus: \( |z| = \sqrt{a^2+b^2} \)
Conjugate: \( \overline{z} = a - bi \) - Math Tricks:
Fast Square of Numbers Ending in 5: \( n5 \times n5 = n(n+1)25 \)
Divisibility by 11: Alternate sum of digits is divisible by 11.
Sum of n consecutive integers: \( S = \frac{n}{2}(\text{First term} + \text{Last term}) \) - Useful Inequalities:
AM ≥ GM ≥ HM (Means: Arithmetic ≥ Geometric ≥ Harmonic) - Unit Circle Values (Radians):
\( \sin 0 = 0, \sin \frac{\pi}{6} = \frac{1}{2}, \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \sin \frac{\pi}{2} = 1 \)
Quick Math Strategy: Plug in sample values to check patterns; rearrange identities for easier manipulation; break down complex shapes into simpler parts!