MARKSCHEME

May 1999

MATHEMATICAL STUDIES

Standard Level

Paper 2

1.	(a)	x	0	10	20	30	40	50	60	70	80	90
		P	-30	15	50	75	90	95	90	75	50	15

(A3)

Notes: Award ½-mark for each correct bold entry, and round down.

If a candidate obtains (A0) here but has clearly shown the method of substituting in the values of x into the formula award (M1)

(A2)(A2)(A1)

Note: For graph, follow through from candidate's table

Notes: Award (A2) for axes, (A2) for plotting points and (A1) for a smooth curve.

Axes: Award ½-mark for each of the following and then round down:

horizontal axis labelled with 'x' or 'Numbers of glasses...'

vertical axis labelled with 'P' or 'Profit'

horizontal scale \rightarrow consistent and represents values $0\rightarrow90$

vertical scale as for horizontal but represents their range of values for P.

Points: Award (A2) for 0 or 1 error

Award (A1) for 2 or 3 errors

Award (A0) otherwise

Question I continued

(iii)
$$67\pm 2$$
 (A1) 33 ± 2

Note: Award no marks for -30 swiss francs

Note: Follow through from candidate's graph

(d) Fiona's share
$$=\frac{3}{6}$$

Profit from 40 glasses = 90 swiss francs

Fiona's profit =
$$\frac{1}{2} \times 90$$

= 45 (A1)

[15 marks]

(A1)

(A3)

2. (a) (i) $\mathcal{E} = \{1, 2, 3...16\}$ (A1)

Note: If they include 17, award (A0)

(ii)
$$P \cap Q \cap R = \{4\}$$

Note: Accept answers without brackets e.g. 4

- (b) $P \cup Q$: the set of numbers that are either multiples of 4 or factors of 36, or everything that is in P or Q (or equivalent)
- (c) (i) ε

Notes: Follow through with candidate's list for \mathcal{E} , P, Q, R.

Part (i): Award (A1) for the rectangle, (A1) for 3 intersecting circles labelled appropriately

Part (ii): There are 8 regions. If a region contains an element that it shouldn't, or does not have an element that it should, then the region is incorrect. Award marks as follows:

0 or 1 region incorrect (A3)
2 or 3 regions incorrect (A2)
4 or 5 regions incorrect (A1)
otherwise (A0)

Question 2 continued

(d) (i) x is a number that is a multiple of 4 or a square number but is not a factor of 36 (A2)

Note: Award (A1) for the explanation of $p \vee r$, (A1) for the explanation of $\wedge \neg q$

(A1)

Note: This shading should appear on the Venn diagram in part (i)(c)

(iii) (a)	p	q	r	$p \lor r$	$\neg q$	$(p \lor r) \land \neg q$
		T	Ť	Т	T	F	F
		T	Т	F	T	F	F
		Т	F	T	T	T	$\overline{\mathbf{T}}$
		T	F	F	Т	Т	T
		F	T	T	T	F	F
		F	Ţ	F	F	F	F
		F	F	T	T	T	T
		_	_				1

(A3)

Notes: Award (A1) for $p \lor r$, (A1) for $\neg q$ and (A1) for $(p \lor r) \land \neg q$ (follow through from candidate's previous columns). Award (A3) for last column only, written correctly.

(b) Either 8 or 16 (A1)

Note: Refer to candidate's Venn diagram, and award (A1) for any number that appears in the shaded region

[15 marks]

3. (a) (i)

$$z = \frac{700 - 672}{50} \tag{M1}$$

= 0.56

$$\Phi(0.56) = 0.7123$$
= 0.712 (3 s.f.)
(A1)

(ii) B A A 640 672 700

Area
$$A = 0.7123 - 0.5$$
 (M1)

= 0.2123

Area B

$$z = \frac{640 - 672}{50} = -0.64$$

$$\Phi(-0.64) = 1 - 0.7389 = 0.2611 \tag{M1}$$

Area
$$B = 0.5 - 0.2611$$
 (M1)

= 0.2389

Therefore
$$p(640 < X < 672) = 0.2123 + 0.2389$$
 (M1)

$$= 0.4512$$

= 0.451 (3 s.f.) (AI)

Question 3 continued

(b) (i)

(MI)

Note: Award (MI) for indicating an area of 33 % or 0.33

(ii)
$$\Phi(z) = 0.67 \tag{M1}$$

$$z = -0.44 \tag{AI}$$

Note: If candidate has not identified 0.67 but has z = 0.44 then award (A1)

(iii)
$$-0.44 = \frac{x - 672}{50}$$
 (M1)

$$x = 650 (A1)$$

(c) p(exactly one container contains more than the printed volume)

$$=0.33\times0.67\times2$$
 (M1)(M1)

Note: Award (M1) for 0.33×0.67 , (M1) for $\times 2$

$$= 0.4422$$

= 0.442 (3 s.f.) (AI)

(A3)

Notes: Award ½-mark for each correct entry. Round down.

If 90° is not shown at A, accept B as east of A if the north direction is correctly indicated at B with 90° shown.

(b) (i) Angle
$$A\hat{B}C = 360^{\circ} - (150^{\circ} + 90^{\circ})$$
 (M1)

$$=120^{\circ} \tag{AI}$$

Notes: Follow through with candidate's diagram.

If ABC is shown as 150° in diagram, and no working is shown, award (M0)(A0) for ABC = 150°.

$$AC^2 = 260^2 + 260^2 - 2 \times 260 \times 260 \cos 120$$
 $AC^2 = 202800$
 $AC = 450.33321 \text{ m}$
(M1)

$$AC = 450 \text{ m } (3 \text{ s.f.})$$
 (A1)

Question 4(b) continued

$$\cos D = \frac{315^2 + 200^2 - 202800}{2 \times 315 \times 200} \text{ (working with AC}^2 = 202800)$$
 (M1)

 $\cos D = -0.5045634921...$

$$D = 120.3023...^{\circ}$$

$$D = 120^{\circ} (3 \text{ s.f.})$$
 (A1)

OR
$$\cos D = \frac{315^2 + 200^2 - 450^2}{2 \times 315 \times 200}$$
 (working with AC = 450)

 $\cos D = -0.5021825397...$

$$D = 120^{\circ} (3 \text{ s.f.})$$
 (A1)

(c) Area
$$\triangle ABC = \frac{1}{2} \times 260 \times 260 \sin 120 \text{ m}^2$$

= 29271.65865...m²

Note: Follow through with candidate's results

Area ACD =
$$\frac{1}{2} \times 315 \times 200 \sin 120 \text{ m}^2$$

= $27279.80022...\text{ m}^2$

Area ABCD =
$$56551.45887...m^2$$

= $56600 m^2 (3 s.f.)$ (A1)

Note: Accept other answers if candidates use unrounded values for ADC

Question 4 continued

Note: Award (MI) for 30°, (MI) for other 30° (angle AĈB)

Bearing of A from
$$C = 360^{\circ} - (2 \times 30^{\circ})$$

= 300° (A1)

[15 marks]

5. (i) (a) (i)
$$p(\text{green}) = \frac{5}{10}$$
 (A1)

(ii)
$$p(\text{not green}) = \frac{5}{10}$$
 (A1)

Note: Accept $\frac{1}{2}$, 0.5 or 50 % for either answer

(b) (i)
$$p(G|G) = \frac{4}{9} \text{ or } 0.444 \text{ (3 s.f.)}$$

(ii) p(not green then not green)

$$=\frac{5}{10}\times\frac{4}{9}$$
 (M1)

$$= \frac{20}{90} \text{ or } \frac{2}{9} \text{ or } 0.222 \text{ (3 s.f.)}$$
 (A1)

(iii) p(one green and one not green)

$$=\frac{5}{10}\times\frac{5}{9}+\frac{5}{10}\times\frac{5}{9}$$
 (M2)

Note: Award (M1) for $\frac{5}{10} \times \frac{5}{9}$, (M1) for (×2)

$$= \frac{50}{90} \text{ or } \frac{5}{9} \text{ or } 0.556 \text{ (3 s.f.)}$$
 (A1)

(c) (i)
$$p(3 \text{ green}) = \frac{5}{10} \times \frac{4}{9} \times \frac{3}{8}$$
 (M1)

$$= \frac{60}{720} \text{ or } \frac{1}{12} \text{ or } 0.0833 \text{ (3 s.f.)}$$
 (A1)

Question 5(i)(c) continued

(ii)
$$p(\text{only one green}) = 3 \times \frac{5}{10} \times \frac{5}{9} \times \frac{4}{8}$$
 (M2)

Note: Award (MI) for $\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8}$, (MI) for (×3)

$$= \frac{300}{720} \text{ or } 0.417 \text{ (3 s.f.) or } \frac{10}{24} \text{ or } \frac{5}{12}$$
 (A1)

(iii) p(at least one green) = 1 - p(no green)

$$=1-\frac{5}{10}\times\frac{4}{9}\times\frac{3}{8}$$
 (M1)

$$=1-\frac{60}{720}$$

$$=\frac{660}{720} \text{ or } \frac{11}{12} \text{ or } 0.917 \text{ (3 s.f.)}$$
 (A1)

(ii) (a)
$$p(\text{two defective}) = 6 \times 0.05^2 \times 0.95^2$$
 (M2)

Note: Award (M1) for $0.05^2 \times 0.95^2$, (M1) for (×6)

$$= 0.0135375$$

$$= 0.0135 (3 \text{ s.f.})$$
 (A1)

(b)
$$p(\text{at least one defective}) = 1 - 0.95^4$$

= 0.18549375...

$$= 0.185 (3 \text{ s.f.})$$
 (A1)

[20 marks]

Notes: (a)(i) Award (A1) for axes

(a)(ii) Award (A1) for the points A, B and C correctly plotted and labelled (A1) for A, B, C joined to give triangle

(b)(i) Award (A2) for all points correctly transformed and triangle A'B'C' drawn (A1) for triangle not drawn or 1 point incorrect (A0) otherwise

Note: Follow through from candidate's diagram, all correct for (A1)

(c) (i)
$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
 (A1)

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$$
 (A1)

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} = \begin{pmatrix} -5 \\ -5 \end{pmatrix} \tag{A1}$$

Question 6(i)(c) continued

(ii) See graph (A1)

Note: Award (A1) for the points A'', B'' and C'' correctly plotted and joined to form a triangle

- (iii) Reflection in the line y = -x (A1)
- (iv) Rotation of 90° anti-clockwise about the origin (A2)

Notes: Award (A1) for 90° rotation, (A1) for anti-clockwise about origin. Award (A2) for the transformation matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- (ii) (a) B(6,6,0) (A1)
 - (b) Mid-point

$$x = \frac{0+6}{2} = 3, y = \frac{0+6}{2} = 3, z = \frac{0+0}{2} = 0$$
 (M1)

$$M(3,3,0)$$
 (A1)

Note: If candidate has shown no working but has correct coordinates for M, award (A2)

(c)
$$E(3,3,7)$$
 (A1)

Note: Follow through with candidate's M

(d) DB =
$$\sqrt{6^2 + 6^2}$$
 (M1)
= $\sqrt{72}$

$$MB = \frac{\sqrt{72}}{2} = 4.24 \text{ (3 s.f.)}$$
(M1)

Note: Award (MI) for dividing DB by 2

$$EB = \sqrt{7^2 + 18}$$

Note:
$$\left(\frac{\sqrt{72}}{2}\right)^2 = 18$$

so EB =
$$\sqrt{67}$$
 or 8.19 (3 s.f.) (A1)

7. (a) (i) Tulips: x hectares at £ 20 per hectare \Rightarrow £ 20x.

Carnations: y hectares at £ 12 per hectare \Rightarrow £ 12y.

Therefore total cost of planting is £ (20x + 12y) (R1)

They cannot spend more than £ 240 so $20x + 12y \le 240$ (R1)

(ii)
$$5x + 3y \le 60$$
, or $y \le \frac{-5}{3}x + 20$ or equivalent (A1)

Note: Must be completely simplified for (A1)

(iii) $x \ge 0$: It is not possible to plant a negative number hectares of tulips (or equivalent e.g. must plant zero or more hectares of tulips) (R1)

 $y \ge 6$: At least 6 hectares of carnations must be planted (R1)

(iv)
$$x+y \le 16$$

Note: Accept alternative forms

Question 7 continued

Notes: (b)(i) Award (A2) for axes and label, as follows:

Award %-mark for each of the following then round up:

each axis labelled with at least x and y

consistent scale on each axis

Award (A4) for lines as follows:

Award (A1) for y = 6, (A1) for x + y = 16

Award (A2) for 20x + 12y = 240, i.e. (A1) for x intercept, (A1) for y intercept

(b)(ii) Award (A1) for shaded region or appropriate region clearly indicated

Question 7(b) continued

(iii)
$$(0,16)(0,6)(6,10)$$
 (A1)

Note: Award ½-mark for each correct point and round down

$$(8.4, 6)$$
 (accept 8.4 ± 0.1) (A1)

Note: Follow through from candidate's graph

(c) (i) (a) profit/hectare for tulips

$$=7000 \times £ 0.85 = £ 5950$$
 (A1)

(b) profit/hectare for carnations

$$=10000 \times £ 0.45 = £ 4500$$
 (A1)

(ii)
$$P = 5950x + 4500y$$
 (A1)

Note: For (M1) here candidate should have at least substituted bold values into the profit formula

[20 marks]